
Science & Mathematics 
Topic

Professor John Keyser
Texas A&M University

Introduction to C++ 
Programming Concepts  
and Applications

Technology
Subtopic



Published by

THE GREAT COURSES

Corporate Headquarters

4840 Westfields Boulevard | Suite 500 | Chantilly, Virginia | 20151‑2299

[phone] 1.800.832.2412 | [fax] 703.378.3819 | [web] www.thegreatcourses.com

Copyright © The Teaching Company, 2019

Printed in the United States of America

This book is in copyright. All rights reserved. Without limiting the rights under copyright reserved 
above, no part of this publication may be reproduced, stored in or introduced into a retrieval system, 
or transmitted, in any form, or by any means (electronic, mechanical, photocopying, recording, or 
otherwise), without the prior written permission of The Teaching Company.

http://www.thegreatcourses.com
http://www.thegreatcourses.com


i  Professor Biography

John Keyser, PhD
Professor of Computer Science and Engineering

Texas A&M University

John Keyser is a Professor of Computer 
Science and Engineering at Texas A&M 
University. He earned his PhD in Computer 
Science from the University of North Carolina. 
As an undergraduate, he earned 3 bachelor's 
degrees—in Computer Science, Engineering 
Physics, and Applied Math—from Abilene 
Christian University. 

Professor Keyser's interests in physics, 
math, and computing led him to a career in 
computer graphics, which has allowed him 
to combine all 3 disciplines. He has published 
several articles in geometric modeling, 
particularly looking at ways of quantifying 
and eliminating uncertainty in geometric 
calculations. Professor Keyser has been a long-
standing member of the solid and physical 
modeling community, including previously 
serving on the Solid Modeling Association 
executive committee. He has also published 
several articles and coauthored a textbook 
in physically based simulation for graphics 
(Foundations of Physically Based Modeling 
and Animation). As a member of the Brain 
Networks Laboratory collaboration at Texas 
A&M, he has worked on developing a new 
technique for rapidly scanning vast amounts 

of biological data, reconstructing the 
geometric structures in that data, and helping 
visualize the results in effective ways. In 
addition, he has published papers on a variety 
of other graphics topics, including rendering 
and modeling.

Professor Keyser's teaching has spanned 
a range of courses, from introductory 
undergraduate courses in programming; 
through upper-level undergraduate courses 
in graphics, programming, and software 
development; to graduate courses in graphics 
modeling and simulation. Among these, he 
created a course called Programming Studio 
that has become required for all Computer 
Science and Computer Engineering majors 
at Texas A&M, and he helped develop the 
introductory programming course taught to all 
Texas A&M Engineering students. 

Professor Keyser has won several teaching 
awards at Texas A&M, including the 
Distinguished Achievement Award in Teaching, 
which he received once at the university level 
and twice from the College of Engineering. 
As an assistant professor, he was named a 
Montague Scholar by the Center for Teaching 

Excellence, and he has received other awards, 
including the Tenneco Meritorious Teaching 
Award and the Theta Tau Most Informative 
Lecturer Award. 

Since writing his first computer program more 
than 35 years ago, Professor Keyser has loved 
computer programming. He has particularly 
enjoyed programming competitions, both as 
a student competitor and as a team coach. Of 
the many computer science classes he took, 
the most important class turned out to be the 
one in which he met his wife. In his free time, he 
enjoys traveling with her and their 2 daughters. 

Professor Keyser's other Great Course is How 
to Program: Computer Science Concepts and 
Python Exercises. 

http://www.thegreatcourses.com
https://www.thegreatcourses.com/courses/how-to-program-computer-science-concepts-and-python-exercises.html
https://www.thegreatcourses.com/courses/how-to-program-computer-science-concepts-and-python-exercises.html
https://www.thegreatcourses.com/courses/how-to-program-computer-science-concepts-and-python-exercises.html


iiTable of Contents

Professor Biography ...................................... i

Course Scope ............................................ 1

01 Compiling Your First C++ Program .................... 2
Introduction to Computer Programming 2
What Happens When You Program 3
Your First Program 4
Quiz 8
Quiz Answers 9

01b C++ QUICK START: With Browser or Download ....... 10
Introduction 10
Quick Start with a Browser 11
Quick Start with an IDE 14

02 Variables, Computations, and Input in C++  ........... 17
Variables and Computations 17
Variable Declarations 19
Variable Assignments 21
Computing Calories 22
Incrementing Variables 23
How C++ Supports Mathematical 

Functions 25
Input 26
Quiz 29
Quiz Answers 30

Table of Contents
03 Booleans and Conditionals in C++ ................... 31

Boolean Variables 31
Comparison Operators 34
Conditional Statements 35
Quiz 42
Quiz Answers 43

04 Program Design and Writing Test Cases in C++ ....... 44
The Structure of a C++ Program 44
Designing and Testing Your Program 46
Quiz 52
Quiz Answers 53

05 C++ Loops and Iteration ............................. 54
While Loops 54
For Loops 57
Scope of Variables 61
Quiz 63
Quiz Answers 64

06 Importing C++ Functions and Libraries ............... 65
Code Libraries 65
How Code and Libraries Are Compiled 

in C++ 66
The C++ Standard Library 67
Random Numbers 69
Quiz 74
Quiz Answers 75

NAVIGATION TIP

To go back to the page you came from, press Alt + ← on a PC or ⌘ + ← on a Mac. On a tablet, use the bookmarks panel.

http://www.thegreatcourses.com


iiiTable of Contents

07 Arrays for Quick and Easy Data Storage ............. 76
Storing Variables in Memory 76
Indexing into an Array 78
Initializing an Array 81
Array Bounds 83
Quiz 84
Quiz Answers 85

08 Vectors for Safe and Flexible Data Storage ........... 86
Using Vectors 86
Vector Size Initialization 89
Vector Resizing 91
Performing Out-of-Bounds Checks 92
Assigning Vectors 94
Quiz 95
Quiz Answers 96

09 C++ Strings for Manipulating Text .................... 98
String Variables and Literals 98
String Operations 102
Char-Type Variables 103
Quiz 107
Quiz Answers 108

10 Files and Stream Operators in C++ .................. 109
File Streaming 109
String Streaming 113
Quiz 116
Quiz Answers 117

11 Top-Down Design and Using a C++ Debugger ....... 119
Top-Down Design 119
Incremental Development 122
Debugger Tool 124
Quiz 128
Quiz Answers 129

12 Creating Your Own Functions in C++ ................ 131
Functions as Black Boxes 131
Creating Your Own Functions 132
The Function Body 134
Conceptual Separation 135
Scope 138
Quiz 142
Quiz Answers 143

13 Expanding What Your Functions Can Do in C++ ..... 144
Overloading Functions 144
Setting Default Parameters 148
Using References 149
Quiz 152
Quiz Answers 153

14 Systematic Debugging, Writing Exceptions ..........154
A Systematic Approach to Debugging 154
Types and Sources of Errors 159
Using Exceptions 160
Quiz 163
Quiz Answers 164

15 Functions in Top-Down and Bottom-Up Design ..... 165
Top-Down Design 165
Bottom-Up Design 169
Building a Library 171
Quiz 173
Quiz Answers 174

16 Objects and Classes: Encapsulation in C++ .......... 175
Object-Oriented Programming 175
Creating Classes 177
Sorting Data in Classes 177
Public versus Private 181
Quiz 185
Quiz Answers 186

http://www.thegreatcourses.com


ivTable of Contents

17 Object-Oriented Constructors and Operators ........ 187
Constructors 187
Operator Overloading 190
Overloading Binary Operators 191
Overloading Unary Operators 195
Friend Functions 197
Overloading Stream Operators 198
Quiz 200
Quiz Answers 201

18 Dynamic Memory Allocation and Pointers ........... 202
Dereferencing Pointers 202
Dynamic Memory Allocation 204
A Game of 20 Questions 205
Destructor Functions 209
Vectors: An Alternative to Dynamic Memory 

Allocation 209
Quiz 210
Quiz Answers 211

19 Object-Oriented Programming with Inheritance ..... 213
Inheritance 213
The Protected Category 217
Constructors with Inheritance 220
Quiz 224
Quiz Answers 225

20 Object-Oriented Programming with Polymorphism .. 227
A Class Hierarchy 227
Virtual Functions 233
Pure Virtual Functions 236
Quiz 238
Quiz Answers 240

21 Using Classes to Build a Game Engine in C++ ........ 241
Designing Classes 241
Coding Your Design 246
Quiz 250
Quiz Answer 251

22 C++ Templates, Containers, and the STL ............ 252
Templates and Containers 252
Stacks 254
Queues 255
Lists and Iterators 256
Quiz 261
Quiz Answers 262

23 C++ Associative Containers and Algorithms ......... 263
Containers 263
Templated Functions 268
Quiz 273
Quiz Answers 274

24 Artificial Intelligence Algorithm for a Game .......... 275
AI Game Playing 275
Developing Algorithms 276
From Algorithms to Implementation 278
Improving Your Algorithms 280
Quiz 281
Quiz Answer 282

Glossary ............................................... 283

C++ Syntax ............................................. 295

Symbols 295
Predefined Keywords 301
Predefined Commands 303
Predefined Variable Types 304
Container Types 305

Bibliography ........................................... 307

http://www.thegreatcourses.com


1Course Scope

Introduction to C++: 
Programming Concepts and Applications
As computers become more and more a part of our 
everyday lives, it is easy to imagine them as controlling 
our lives. However, programming gives us a chance to 
truly be in charge of the computers. Programming lets 
us specify exactly how a computer should operate at the 
lowest levels. And by putting these low-level commands 
together, we can get the computer to do complex and 
interesting things.

This course explores the process of computer 
programming—specifically using the language C++. It 
is one of the most powerful programming languages 
there is, giving programmers the power to control from 
the lowest levels—specifying individual elements of 
memory—to the highest levels, where broad concepts 
are used to manipulate large amounts of data. C++ also 
supports a variety of programming paradigms, from 
the traditional imperative and procedural approaches 
that have long been a part of most languages, to the 
object-oriented approaches that began to dominate 
programming in recent decades, to generic approaches 
that let programmers specify behavior at an even more 
general level.

This course walks you through the range of C++ 
programming, providing a tour of all the key aspects of 
programming in C++. No prior programming knowledge 
is assumed, and instructions are provided to help novice 
programmers get everything set up to begin their 
programming journey.

The beginning lectures start with the basics of 
programming, describing how variables work, how 
basic input and output is handled, and how basic 
computations can be performed (lectures 1 and 2). 

You then explore how the flow through a computer 
program is managed, looking at the key concepts of 
conditionals—where choices can be made (lecture 3)—
and loops, where commands can be repeated 
(lecture 5). You also learn how to make use of the 
numerous functions that C++ provides in standard 
libraries (lecture 6).

Next, the course turns to structures that C++ provides 
for handling larger amounts of data. You are introduced 
to 2 methods: the array, a concept carried over from 
the C language that forms the basis for storing data 
in a large block of memory (lecture 7); and the vector, 
a new approach in C++ that improves on the array 
structure to provide additional safety and functionality 
(lecture 8). The way vectors are treated in C++ is 
very similar to the way it handles strings, which are 
collections of characters used to handle text (lecture 9). 
For large amounts of data, interactive input and output 
is less feasible, so you are also introduced to the way 
that C++ can handle files (lecture 10).

With these fundamental programming concepts 
established, the course turns to the heart of procedural 
programming: the use of functions. Functions allow 
you to conceptually separate your program, making 
it feasible to develop much larger and more complex 
programs. You discover the process for writing your own 
functions (lecture 12) and the different ways you can 
handle parameters, including the introduction of the idea 
of a reference (lecture 13).

Following this, the course turns to object-oriented 
programming (OOP). It's probably the most commonly 
used programming paradigm today, and C++ provides 

full support for OOP development. OOP typically 
involves 3 key ideas, each of which is explored: 
encapsulation, where similar data and functions are 
grouped together (lecture 16); inheritance, where 
variables and functions are shared from one structure to 
another (lecture 19); and polymorphism, where different 
structures can be used interchangeably (lecture 20). 
OOP also brings up the idea of constructors, and 
operator definitions are also commonly seen in OOP, so 
both of these ideas are addressed as well (lecture 17). 
Finally, though it is not an OOP-specific topic, the need 
to allocate and deallocate memory comes up frequently 
in the context of OOP, so the idea of dynamic memory 
allocation is explored (lecture 18).

The last major topic is generic programming, 
emphasizing the use of the Standard Template Library 
(STL) in C++. You discover key aspects of the STL and 
how using it can simplify your programming (lectures 
22 and 23).

Throughout the course, several lectures are 
interspersed that deal with the larger issues of how to 
move from simply writing lines of code to developing 
larger programs (lectures 4, 11, 14, 15, 21, and 24). The 
topics covered include methods of testing, incremental 
code development, debugging, exceptions, top-down 
and bottom-up design, and object-oriented design. The 
power of OOP is used to design a game engine that can 
play different games (lecture 21). The course concludes 
with a final lecture showing how C++ can be used to 
develop algorithms and in particular focuses on the way 
an artificial intelligence algorithm can be implemented 
as the opponent in a game (lecture 24). 

http://www.thegreatcourses.com


2Lecture 01 | Compiling Your First C++ Program

// INTRODUCTION TO COMPUTER PROGRAMMING

Computers operate by following a set of 
instructions. But the instructions that a 
computer can understand are a bunch of 1s 
and 0s—a long sequence of binary numbers 

that encodes the instructions and data 
for a computer to use. For people, this is 
nearly impossible to follow, and this is why 
programming languages have been developed.

The first modern programming languages were 
developed in the 1950s, with Fortran being 
the first widely used one. In fact, Fortran is still 
used today! Fortran is a procedural language, 
and procedural programming is still a common 
approach used today, including as a style of 
C++ programming. Since Fortran, hundreds of 
languages have been developed, and each one 
has its own strengths and weaknesses.

What is sometimes considered the 
first program was written in the 
1840s by Ada Lovelace, who wrote 
computational instructions that could 
run, in theory, on a machine that had 
been designed but not built. 

C++ is one of the most powerful, efficient, and flexible programming 
languages that exists. It allows you to program in a way that closely 
corresponds to machine instructions while also providing several 
higher-level features to make it easier for people to understand. 
C++ supports multiple programming styles, or paradigms, that have 
emerged over time, and it is particularly strong in allowing you to use a 
variety of different paradigms in your programs. As a result, C++ is used 
as the basis for a wide variety of applications across many domains.

01

C++ has been used to develop many 
of the programs you've probably 
experienced—from Microsoft 
Windows to the code underlying 
Google's search and to website 
functionality on YouTube, Facebook, 
Amazon, and PayPal. It's been used 
to control devices ranging from ship 
engines to Mars Rovers and in phone 
systems worldwide.

IN THIS LECTURE:

Introduction to Computer Programming

What Happens When You Program

Your First Program

Program 1_1

Program 1_9

Program 1_10

Quiz

Quiz Solutions

Compiling Your First C++ Program

http://www.thegreatcourses.com


3Lecture 01 | Compiling Your First C++ Program

In the 1980s, Bjarne Stroustrup wanted to 
retain the low-level efficiency advantages of 
C while adding some of the more modern 
programming approaches. Thus, C++ 
was born!

C++ was developed as a sort of extension of 
the programming language C, which itself 
was a descendent of an even earlier language 
called B. All of these came out of Bell Labs, 
later known as AT&T Labs. While B never got 
much use, C—which was developed in the 
early 1970s—became very widely used and still 
is today.

One big advantage of C++ was that it added 
the ability to do object-oriented programming, 
which lets you group your data and operations 
together in more useful ways. But C++ is 
not only an object-oriented language. Other 
new features have been added, too, allowing 
it to reflect the most recent advances in 
programming language design.

This all makes C++ incredibly powerful, letting 
you work across a full range of programming 
paradigms. Like C, you can work in just 
about as low a level of detail as you want, 
specifying individual bits, or you can work 

at a much higher level, using cutting-edge 
programming constructs that let you write 
code once and apply that to a wide range of 
applications.

C++ is also a language that continues to be 
developed today. There's a large and active 
international C++ standards committee that 
is continually working to determine ways to 
improve the language, including adding new 
features that integrate the best and most 
recent programming practices.

// WHAT HAPPENS WHEN YOU PROGRAM

Programmers generate a program written in 
a programming language, such as C++. The 
program is just a text file, and you're free to 
write it in many different ways. You could use 
your own word processor if you want and just 
save it as a text file. You could use Notepad or 
WordPad on a PC or TextEdit on a Mac. There 
are also editors written specifically to help 
people write code, such as Notepad++.

Once you write a program, you send it to 
a compiler, which takes the instructions 
written in C++ and translates them into 
machine instructions—the instructions that 
the computer can understand. So, a compiled 
program is a program that's ready to be run, 

or executed, by a machine. This compiled 
version of the program is called an executable 
program, and you can then run it on your 
computer whenever you want.

As people develop code, they'll usually 
go through this process many times to 
see if it's working. To make it easier to 
develop code this way, programmers use an 
integrated development environment (IDE), 
which will have an editor that lets you write 
code, usually with some special features to 
help you write code in that language. The IDE 
will have an easy way to automatically save 

that code, have the compiler compile it into 
machine language, and then run it—often just 
with one click of a button.

And there are usually other features built 
into the IDE, such as a debugger, which is a 
tool that helps you find and fix errors in your 
program. The IDE integrates all these things—
and more—into one package so that you can 
edit and compile and run and debug your 
code all in one program.

As you go through this course, you'll 
find it a much more rewarding and 
valuable experience if you're able to 
practice writing your own code. See 
lecture 01b—C++ QUICK START.

http://www.thegreatcourses.com


c

d

a

b

4Lecture 01 | Compiling Your First C++ Program

// YOUR FIRST PROGRAM

There's a very long-standing tradition in 
computer science that the first program you 
develop—in any language—is a Hello, World! 
program, which is just a program that displays 
the message Hello, World! to the user. 

Here's what a Hello, World! program looks 
like in C++.

You set up an IDE and type the program into 
the IDE's editor window. When you tell the IDE 
to run the program, it will both compile the 
program and then run the executable that the 
compiler produced. The result of the program 
is a line of output that prints out the words 
Hello, World!.

The first lines you'll see are comment lines (a). 
Comments are ways of giving notes about the 
code, but they do not affect what the code 
actually does.

The next few lines are header information 
(b). The #include line gives you access to 
a stream of input and output. The using 
namespace line makes it easier for you to 
write code.

The next line has int main and then a pair of 
parentheses (6). This is the part of the code 
that marks the beginning of the program—the 
main part. It lets the computer know that this 
is where the code you want to run begins.

Next, you'll see a pair of curly braces (d), 
which group a set, or block, of commands 
together inside. In this case, the curly braces 
are grouping together all the commands inside 
of the main part of the program.

Finally, you have your actual line of code 
giving a command (8). This is the line of code 
that tells the computer specifically what you 
want to do: It commands the output of Hello, 
World!. This statement is important; all the 
rest of this program is basically the same as in 
other programs. This one statement is the key 
line that does something specific.

In programming terms, the word 
print just means "display" or "show."

// Program 1_1

// Our first program!

#include <iostream>

using namespace std;

int main()

{

 cout << "Hello, World!" << endl; 

}

Curly braces are a critical part of 
C++ programming that date all the 
way back to a predecessor language 
in the 1960s called BCPL—and 
before that to the way you write a 
set in mathematics, such as the set 
containing the numbers {1,2,3}.

A selection of programs will be shown 
in this guide. To view all programs 
discussed in this course, go to 
TheGreatCourses.com/CPlusPlus. 

http://www.thegreatcourses.com
http://TheGreatCourses.com/CPlusPlus


5Lecture 01 | Compiling Your First C++ Program

First, notice that the line begins with the 
word cout, which is an expression meaning 
"console output." The console is the default 
output area, so cout means that there's going 
to be output, and the output will be going to 
the console—it is output to the default output 
area. In an IDE, the default output area might 
be an output pane within the main window, 
or it might pop up a new window to be a 
console window. If you're running the code in 
a browser, it'll show the result in that window 
that you're running from.

Next is what looks like a double less-than sign. 
This is the output stream operator (c). Think 
of the less-than signs as arrows pointing in 
the direction that the information stream is 
flowing. In this case, you have something that 
you want to print, so that thing you're printing 
will flow toward the console output. Notice 
there are 2 stream operators on one line, 
which shows that different items are being 
streamed in order: The thing to the left will 
reach the console output before the thing to 
the right.

After the stream operator is the text that 
you actually want to output. Notice that 
the text you want to see is enclosed in a 
pair of quotation marks. You have to use 
quotation marks to identify text in your code; 
otherwise, the letters will get misinterpreted 
by the compiler. The words Hello and 
World, along with punctuation—a comma 
and an exclamation point—appear inside the 
quotation marks.

The next thing to get streamed to the output 
is the word endl, which is a way of saying 
"end line" for output. If you don't include endl, 
then the next thing that'll be printed out will 
come immediately after the previous one 
on the same line; you include endl so that 
the next thing to be printed will come at the 
beginning of the next line.

Finally, there is a semicolon, which appears 
at the end of the line of code. In C++, the 
semicolon indicates that you've reached the 
end of a line of code.

The only times you don't have a semicolon are 
for a few special cases:

 » the #include line isn't actually a command you 

want the computer to perform as part of the 

program but rather a command to the compiler 

that translates the code to machine instructions

 » the curly braces after main are not a command 

but rather a way of grouping commands 

together.

Any time you are finished with an individual 
command, it will need to have a semicolon at 
the end.

Unlike some other languages, the order and 
spacing of your C++ code doesn't matter. 
You can put multiple instructions of code on 
one line of text with no space needed after 
the semicolons, or you can spread a single 
instruction over multiple lines. The compiler 
basically ignores everything about spacing 
as it converts the program to machine 
instructions. Instead, the way you separate 
one command from another is by using the 
semicolon to mark the end of a statement.

Comments can be anything that helps people 
understand what the code is for. Comments 
are skipped entirely by the compiler; when a 
compiler sees a double forward slash, it always 
reads what follows as a comment. While 
processing code, it skips over it, all the way to 
the end of the line. So, including comments is 
purely to help people reading the code.

The endl indicates an end of line in 
what is output, not necessarily the 
end of a line of code.

Just as a period ends a sentence in 
ordinary English, a semicolon ends a 
statement in C++.

Just like a sentence you write can go 
across more than one line—or you 
can have 2 sentences on the same 
written line—a statement in C++ can 
go across more than one line, or 
you can have more than one C++ 
statement in the same written line. It's 
the semicolon, not just moving to a 
new line, that ends a statement.

http://www.thegreatcourses.com


e

f

f

e

6Lecture 01 | Compiling Your First C++ Program

A comment could be for people who didn't 
write the code but need to come along later 
and understand it, or it can help you tell your 
future self what you had in mind for each part 
of the code.

In C++, there are 2 ways of writing comments. 
The first is one where you begin the comment 
with a double forward slash (e), which is a way 
of indicating that everything from that point 
on in that one line is a comment. 

The other type of comment is one that opens 
with /* and closes with */ (f). This type 
of comment is helpful if you want to write 
multiline comments. It will begin with /* and 
continue until whenever it's closed by */, 
even if that's several lines later. You can insert 
a multiline comment anywhere you wish by 
using this format. You could also easily modify 
your original program to make the initial 
comment use this format.

You often use comments to provide visual 
separation—for example, to create a block 
at the beginning of a program. Notice in this 
example that you have a few lines of just 
asterisks, providing a visual block of comments 
at the beginning of the program.

And you often will use a comment to describe 
what's coming next. For example, you might 
put a comment right before the main part of 
the program, just showing what that part is 
about to do.

This is a pretty simple program; the real work 
of the program is all done in just one line.

There's not much need for comments 
in small pieces of code compared 
to how important they are in bigger 
programs. But getting in the habit of 
including comments to explain code 
will help whenever you do end up 
writing somewhat larger programs.

// Program 1_9

/***********************************/

/* Our First Program! */

/***********************************/

#include <iostream>

using namespace std;

/* About to start the main program */

int main()

{

 cout << "Hello, World!" << endl; // This is a single line 
comment 

}

http://www.thegreatcourses.com


7Lecture 01 | Compiling Your First C++ Program

Click here to see the solution.

This slightly more complex program has 3 
different lines of code in the main program—
the program lines that begin just below the 
int main line. All 3 of these lines are nearly 
identical; they just print out some text. Each 
one prints out text on a different line. The first 
one says, Howdy, John!. The next one says, 
Are you ready to learn C++?, and the final 
one says, Let's get started....

Each output also includes an end-of-line 
character.

Commands are executed in sequential order. 
When you have a series of commands, like the 
3 cout statements you have here, the program 
will handle each of them in sequence—in the 
order specified. So, if you consider a program 
as being a series of commands, then running 
the program is executing those commands in 
order. 

READINGS
a Stroustrup, Programming Principles and Practice Using C++, 

chap. 2 and section 22.2.

b Lippman, Lajoie, and Moo, C++ Primer, sections 1.1–1.3.

c Ousterhout, A Philosophy of Software Design, chaps. 12 and 13 
(re: comments).

Exercise

Write a program that will print your name and address the 
way you would write it on a letter. You can use multiple cout 
statements or try to put it all into one.

// Program 1_10

// A longer program, giving a greeting

#include <iostream>

using namespace std;

int main() {

 cout << "Howdy, John!" << endl;

 cout << "Are you ready to learn C++?" << endl; 

 cout << "Let's get started..." << endl;

}

http://www.thegreatcourses.com


Exercise Solution

8Lecture 01 | Compiling Your First C++ Program

1 Match the following commands and syntax to their purpose.

a <<

b //

c ;

d { }

e /* */

f endl

g cout

h main

Click here to go back to the exercise.

Click here to see the answers.

1  Comment for the remainder of a line

2 Comment that could span multiple lines

3 Designates a group of commands to be executed

4 Designates that a line of output should end

5 Designates the end of a line of code

6 Designates the beginning of the program that will be executed

7 Streaming operator to show direction of output

8 Designates an output statement

// QUIZ

2 What C++ command(s) would be used within a program (inside the main 

section of the code) to output the following multiline poem?

Learning C++,
Syntax, Concepts, and Design
What fun lies ahead!

3 There are 8 errors in the following program. Can you find them?

1 / Program to debug
2 include<iostream>
3 using std;
4 
5 main() 
6  cout "Hello, World! << endl
7 }

Here are 2 possible solutions: 

1 // Program 1_13
2 // Printing an address
3 #include <iostream>
4 using namespace std;
5 
6 int main() {
7  cout << "John Keyser" << endl;
8  cout << "123 Any Street" << endl;
9  cout << "Somewhere, TX 77777" << endl;   
10 }

1 // Program 1_14
2 // Printing an address
3 #include <iostream>
4 using namespace std;
5 
6 int main() {
7  cout << "John Keyser" << endl << "123 Any Street" << endl
8   << "Somewhere, TX 77777" << endl;
9 }

http://www.thegreatcourses.com


9Lecture 01 | Compiling Your First C++ Program

// QUIZ ANSWERS

1 The matches are as follows:

a 7

b 1

c 5

d 3

e 2

f 4

g 8

h 6

2 There are multiple possible answers. Among them are the following:

cout << "Learning C++" << endl << "Syntax, Concepts, and 
Design" << endl << "What fun lies ahead!" << endl;

OR

cout << "Learning C++" << endl;
cout << "Syntax, Concepts, and Design" << endl;
cout << "What fun lies ahead!" << endl;

3 Here are the 8 errors in the given code:

1 Missing a / in the first line (the comment should begin with //, 
not just /)

2 Missing a # before include

3 Missing the namespace between using and std

4 Missing the int before main()

5 Missing the opening { after int main()

6 Missing the << after cout

7 Missing the closing " after the World

8 Missing the ; at the end of the cout statement

Here is a correct version of the code:

1 // Program to debug
2 #include<iostream>
3 using namespace std;
4 
5 int main() {
6  cout << "Hello, World!" << endl;
7 }

Click here to go back to the quiz.

http://www.thegreatcourses.com


10Lecture 01b | C++ QUICK START: With Browser or Download

01b

// INTRODUCTION

To get the most out of this course, you're 
going to want to try programming yourself. To 
do that, you'll need to know what tools to use 
to write programs, how to save programs, and 
how to run programs on your machine.

Here are 3 ways you can use free tools to write 
C++ programs.

The first and easiest way is to use a web 
browser. You can do this from just about any 
computer that has a web browser—even a 
smartphone. Using a web browser has some 
limitations regardless of your computer, but 
it's a good option if you have an especially 
old computer running an old operating 
system. And regardless of operating system, 
sometimes it's more convenient.

The other 2 options involve downloading 
software, called an integrated development 
environment (IDE), to your computer. Either 
option includes both C++ and a first-rate set 
of tools for using C++.

On a PC, the recommended IDE is called 
Visual Studio. The free version is called 
the Community edition, and it will have 
everything you need and much more. Paid 
versions of Visual Studio are geared toward 
teams of professional developers, so it's more 
complicated than you want for this course.

Visual Studio is a great product that can be 
used by novices or by people developing the 
most powerful programs that exist. Visual 
Studio can even be used with a wide variety 
of other languages, though you're just using 
it for C++ in this course.

NOTE: The recommended IDEs 
are Xcode on a Mac or Visual Studio 
Community on a PC. (If you need to use 
both a Mac and a PC, you might consider 
other options, such as "Visual Studio 
Code.") Both Xcode and Visual Studio 
Community will require a somewhat 
recent version of the operating system, 
and some gigabytes of free disk space 
on your system. If you have an older 
computer, or do not wish to install 
additional software on your system, you 
can stick with the browser-based option.

If you happen to be using Linux, then 
the GCC compiler is your best option. 
This was probably installed automatically 
with Linux, but if not, you can go to 
gcc.gnu.org to get it.

IN THIS GUIDE:

Introduction

Basic Hello, World! Program

Quick Start with a Browser

Interactive Hello, World! Program

Hello, World! Program with Error

Quick Start with an IDE
C++ QUICK START: 
With Browser or Download

http://www.thegreatcourses.com
https://itunes.apple.com/us/app/xcode/id497799835?mt=12
https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/
http://gcc.gnu.org


11Lecture 01b | C++ QUICK START: With Browser or Download

// QUICK START WITH A BROWSER

The easiest way to get started with C++ is to 
open a web browser on your computer. Any 
browser should be fine.

From your browser, you will be choosing a 
website that offers an online editor for C++ 
that is interactive.

Some of the websites that work well are 
shown at right, but a web search for "Online 
C++ Compiler" or "Interactive C++ Compiler" 
will turn up some others that should work 
fine, too.

On a Mac, the recommended IDE is called 
Xcode. Apple supports Xcode as an IDE to 
build apps for Apple products, where the 
default is a programming language called 
Swift. However, this same IDE can also develop 
apps and other programs in C++, and, in fact, 
it's widely used for C++ programming more 
generally, too. 

C++ has been updated over the years, from 
C++11 to C++14 and C++17. The newer versions 
add more features, but for this course, C++11 
will be fine.

Once you've got your software environment 
set up, feel free to explore the interface a bit. 
It's fine if there are features that don't initially 
make sense to you; you'll gradually learn more 

about the various options as you go through 
the course and as you develop code on your 
own during and after the course.

WEBSITES WITH INTERACTIVE ONLINE EDITORS

http://cpp.sh/

https://www.onlinegdb.com/online_c++_compiler

https://repl.it/site/languages/cpp

https://www.jdoodle.com/online-compiler-c++

1 // Basic Hello, World! Program

2 #include<iostream>

3 using namespace std;

4 

5 int main() {

6  cout << "Hello, World!" << endl;

7 }

This is a basic Hello, 
World! program. It's just a 
few lines of code, from the 
first 3 lines that begin the 
program, to the cout line 
that actually instructs the 
computer to print Hello, 
World!, and ending with a 
final curly brace.

http://www.thegreatcourses.com
http://cpp.sh/
https://www.onlinegdb.com/online_c++_compiler
https://repl.it/site/languages/cpp
https://www.jdoodle.com/online-compiler-c++


12Lecture 01b | C++ QUICK START: With Browser or Download

There's one pitfall to watch for: Use only sites 
that support interactive mode. If you're going 
to use a browser-based compiler that's not on 
the list, make sure that it supports interactive 
mode when executing a program.

How can you tell?

Here is some code that's interactive. It's a 
version of Hello, World! that also takes input. 
If you run this in the browser, an interactive 
mode will prompt you for your name, which 
you can then type in.

But if you only see a box, often labeled stdin 
(short for standard input), where you type 
input separate from where you see output, 
that is probably not a good sign.

On a site that's not interactive, you would have 
to enter all your input beforehand: It would not 
be possible for a user to reply to a question 
and have the program compute a result.

You should be able to run the program and 
then interact with the output window—to type 
in data when prompted.

Feel free to select whichever site you find easy 
and intuitive to use, but note that cpp.sh is 
especially simple and clean.

OnlineGDB is more powerful; it offers an 
online debugger, which many interactive 
sites lack.

The steps are simple:

1 Type a web address in your browser.
2 Select C++ as the language. Some online 

websites handle other languages, and 

sometimes a different language is selected by 

default. You may need to select C++ from a 

dropdown box or open a new tab for a C++ 

program.

3 Save your code in a text file. Your code is not 

being saved by typical online websites, so you 

should expect to write and save your code in a 

text file and paste it into the browser. A few sites 

may offer you an account; such sites might let 

you save your code there.

1 // Interactive Hello, World! Program

2 #include <iostream>

3 #include <string>

4 using namespace std;

5 

6 int main()

7 {

8  string username;

9  cout << "What's your name? ";

10  cin >> username;

11  cout << "Howdy, " << username << "!" << endl;

12 }

http://www.thegreatcourses.com
http://cpp.sh
https://www.onlinegdb.com/


13Lecture 01b | C++ QUICK START: With Browser or Download

Regardless of which browser-based compiler 
you choose, when you bring up the webpage, 
the first thing that you're likely to see is a box 
with an example program already in it. That's 
the main window, where you'll enter your 
program. There might be a variation on your 
Hello, World! program already there.

Start by deleting what's in the main window. 
Then, enter your Hello, World! program. 
Because the browser won't save your 
program, type this code into a text file and 
then copy and paste it into the main window, 
where the old program used to be.

You may notice that the code is automatically 
assigned several different colors for you, 
though some colors may be less obvious when 
the font size is small. These colors make it 
easier to see the structure of your program. 
The specific colors will vary from site to site, 
but the color coding helps highlight different 
pieces of your program as you write the code.

Once you have entered your program into the 
system, in order to see the results, press the 
Run, or Execute, button, located somewhere 
above or below the main box.

When you run the program, the output 
window will appear, if it wasn't there already. 
On some websites, this output window will 
be visible all the time, but in others, it only 
appears after running a program. This output 
window might be labeled Execution, or 
Console, or Result, or even Input.

If you typed everything correctly, the output 
window should show Hello, World!. If you 
made a mistake typing in the program, then 
you might see an error. It could be in the same 
output window, or it might be in a different 
window or a different tab of an existing window.

Once you get a correct output, try creating an 
error in the code—for example, by removing 
the last character from the second line (>). 
If you try running this, you should see a 
compilation error message somewhere. You 
may need to look at the Compilation tab if it is 
separate from an Execution tab.

The error will list something like 2:18: error: 
missing terminating > character. The 2:18 
is telling you that there was an error detected 
on line 2 in the 18th character—that's where 
the character was removed. The message 
missing terminating > character tells you 
that you're missing the closing angle bracket. 
The error message should give you clues 
about exactly what prevented your program 
from running successfully. Different websites' 
compilers may have different error messages.

1 // Hello, World! program with error

2 #include<iostream

3 using namespace std;

4 

5 int main() {

6  cout << "Hello, World!" << endl;

7 }

Throughout the course, try 
writing the code for yourself 
and maybe even making small 
modifications to it as you feel 
comfortable. Implementing 
and experimenting on your 
own is one of the best ways 
you'll learn the details of how 
to code in C++.

http://www.thegreatcourses.com


14Lecture 01b | C++ QUICK START: With Browser or Download

There are a few limitations of programming in 
a browser:

 » There's no guarantee of reliability: The website 

could go down briefly at any time.

 » Some browser compilers will not let you create 
and store your files on their computer. On 

those websites, reading and writing files would 

not be possible.

 » There's no security or privacy. The browser 

shell is not running on your machine; it's 

compiling and running on some other machine. 
You should not be entering sensitive or 

proprietary information into this system.

Still, a web interface is probably the simplest 
way to quickly try out a program and see the 
results. The browser is an easy way for you to 
do 90% of what's in this course.

// QUICK START WITH AN IDE

Remember that any program in 
the browser window is not being 
saved anywhere, so it's up to you 
to make sure your code is not lost.

Whenever you have programs 
you type into the browser, you 
should also copy and paste the 
program into a document on your 
computer.

Saving in plain text is best, 
because that won't introduce 
extraneous information and 
formatting that a word processor 
might add in. If you save your 
file with a .cpp extension at the 
end, then that's a signal that it's 
C++ code.

We've provided supplemental documentation at TheGreatCourses.com/CPlusPlus 
with even more detailed steps and tips for downloading and installing. You may be 
fine with the information provided here, but if you do run into trouble, please see 
that supplemental information for additional help.

When you're ready to move beyond browser-
based programming, using an integrated 
development environment (IDE) will provide 
greater capabilities but takes a little more to 
set up. There are 2 main steps to follow:

1 Download and install the IDE.
2 Write and run your programs.

To use an IDE, you'll need to first download 
and install the IDE on your computer.

On a PC, this means going to the Visual Studio 
Community homepage. Click the button 
to start the download. This will download 
the installer, which you then need to run to 
actually perform the installation.

To download on a Mac, find Xcode in the App 
Store and install. When you install, you'll need 
to follow particular installation instructions. 
If given the option, specify that you want to 
use C++.

For the most part, just let things install in their 
default ways and default places. In most cases, 
the installation will go smoothly.

CONTINUED ON PAGE 16

http://www.thegreatcourses.com
http://TheGreatCourses.com/CPlusPlus
https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/
https://itunes.apple.com/us/app/xcode/id497799835?mt=12


15Lecture 01b | C++ QUICK START: With Browser or Download

WINDOWS PC with Visual Studio Community MAC with Xcode

1 START A PROJECT
a Select "Start a New Project" from the first window   

OR From within Visual Studio, go to File → New → Project.

b Select Empty Project.

c Enter a Name for the project; then click Create.

2 CREATE A C++ FILE
a Go to Project → Add New Item.

b Select "C++ file" (with a .cpp extension).

c Enter a Name for the file (e.g., "HelloWorld.cpp"); then click Add.

3 WRITE YOUR PROGRAM
a Enter your Hello, World! program into the window.

4 BUILD AND RUN THE PROGRAM
a Go to Debug → "Start debugging"  

OR Go to Debug → "Start without debugging"  
OR Hit the F5 key 
OR Click the green arrow titled Local Windows Debugger.

5 OUTPUT SHOULD APPEAR
a A window will pop up, showing the Hello, World! output. You 

can dismiss this window by pressing any key inside it.  
 
NOTE: Visual Studio 2017 (used during the development of this 
course) required users to include system("pause"); at the 
end of the code in order to keep the output window open. As 
of Visual Studio 2019, that line of code is no longer necessary. 
If you're running any earlier version of Visual Studio, put 
system("pause"); right before the final closing curly brace in 
every program you write to make the output window stay up.

1 START A PROJECT
a Select "Create a new Xcode project".

b Pick Mac OS X from the ribbon at the top of the "Choose 
template" box.

c Select Command Line Tool and press Next.

d Enter a name for the project (such as "HelloWorldProject").

e IMPORTANT: Select C++ as the type (the default is Swift).

f Choose an Organization Identifier (such as your initials);  
then press Next.

g Optionally, create a folder for your programs (such as "C++ 
project folder"); then press Create.

2 CREATE A C++ FILE
a Look at the left panel for the project folder and click on 

"main.cpp".

b A window will pop up with a default Hello, World! 
program in it.

3 WRITE YOUR PROGRAM
a Delete code displayed by default. 

b Type your own Hello, World! program.

4 BUILD AND RUN THE PROGRAM
a Click on the arrow at the top left of the window  

OR Go to Product → Build; then go to Product → Run.

5 OUTPUT SHOULD APPEAR
a An All Output area should appear in the lower right of the 

Xcode Window.

b This should have the output results: Hello, World!.

http://www.thegreatcourses.com
https://visualstudio.microsoft.com/vs/community/
https://itunes.apple.com/us/app/xcode/id497799835?mt=12


16Lecture 01b | C++ QUICK START: With Browser or Download

Once you have your IDE installed, it's time to 
try writing and running a program in the IDE. 
Find the IDE you installed on your system and 
start it up.

When you start the IDE, the first thing you'll 
need to do is to create a new project. The 
project will hold all of the C++ files that you 
are creating to generate your program. You 
can create new projects for different programs 
throughout this course.

Setting up a new project is a little different in 
Visual Studio and in Xcode.

 » In Visual Studio, you will create a new project, 
selecting Empty Project when you have a 

chance.

 » On a Mac, you'll need to select that it's for your 

operating system (Mac OS X), that you want a 

command-line tool, and that you want a C++ 

project.

In both IDEs, you'll need to pick a name for 
your project; make it something descriptive, 
such as "GreatCoursesLecture1".

Once a project is created, you'll need to have 
an actual C++ file that will hold your program.

In Visual Studio, you'll need to "add a new 
item" to your project, and that new item will 
be a C++ file. You get to choose the name of 
the C++ file.

In Xcode, the file will be provided automatically 
and will have the name "main.cpp"; you just 
find the file listed under the project folder and 
click on it.

Once that's done, you'll be able to enter your 
Hello, World! program, or whatever code 
you want to write. When your code is entered, 
it's time to compile and run.

In Visual Studio, you do this by selecting 
Start Debugging or Start Without Debugging 
from the Debugger menu. After the first time 
running, you'll also just be able to click the 
green arrow labeled Local Windows Debugger.

In Xcode, you'll just hit the Build and Run 
arrow near the top left.

When this happens, you should get the Hello, 
World! output to a window that pops up. In 
the Mac version, that window will appear at 
the bottom right of the Xcode window.

In Visual Studio, a new window will pop up, 
but it will disappear as soon as the program 
is over. To keep that window open so that you 
can actually see what's output, you'll want 
to add one small line to your code: system 
("pause");. Be sure to add it as the last line 
before the final curly brace. This system-pause 
command basically says "pause the system 
until the user hits a key" and will keep the 
window open for you so that you can see the 
output.

Just to see what happens, you might want to 
also make an intentional error in your code. 
For example, leave the c off of the word cout. 
That should cause a compiler error, and you 
will see how your IDE identifies and reports 
the error to you.

Now you're ready to develop your own 
programs in your own IDE. 

CONTINUED FROM PAGE 14

http://www.thegreatcourses.com


17Lecture 02 | Variables, Computations, and Input in C++ 

All of a program's operations basically come down to a few things: input, 
variables, computations, and output. You're going to learn how to write 
programs that touch on all of these aspects of what makes a program. 
And each of these fundamental tasks of a program corresponds to 
the main hardware components of a computer. The input and output 
are handled by an interface with the world. Variables are handled in 
memory. And computations are handled by the processor, the part of the 
computer that performs calculations.

02

// VARIABLES AND COMPUTATIONS

You've already learned how to write programs that create output. This 
was the console output command, cout, which made the computer 
output text to the screen. 

Let's start with a program for counting calories (Program 2_1 on 
page 18). It involves not only output, but also variables assigned to 
memory and calculations involving the processor. 

The comment at the top of this program acts like a title, telling you that 
the program is to compute calories using carbs, protein, and 
fat (a).

The program starts with the same (enabling) lines. The first 2 lines 
help you get access to the commands you need, and the int main line 
indicates where the program should start (b).

IN THIS LECTURE:

Variables and Computations

Program 2_1

Variable Declarations

Program 2_3

Variable Assignments

Computing Calories

Incrementing Variables

Program 2_10

Program 2_14

How C++ Supports Mathematical Functions

Program 2_17

Program 2_18

Input

Program 2_19

Program 2_21

Quiz

Quiz Solutions

Variables, Computations, 
and Input in C++ 

http://www.thegreatcourses.com


c

b

a

d

e

f

18Lecture 02 | Variables, Computations, and Input in C++ 

// Program 2_1

// Program to compute calories using carbs, protein, and fat

#include<iostream>

using namespace std;

int main() {

 int carb_grams;

 int protein_grams;

 int fat_grams;

 carb_grams = 30;

 protein_grams = 5;

 fat_grams = 15;

 int calories;

 calories = 4 * carb_grams + 4 * protein_grams + 9 * fat_grams;

 cout << "There are " << calories << " calories in this dish" << endl;

}

The main body of the program has 4 parts: 

1 variable declarations, where you give names to variables (c);

2 variable assignments, where you give values to those variables (d);

3 a single computation (to calculate calories) (e); and 

4 output (f).

http://www.thegreatcourses.com


19Lecture 02 | Variables, Computations, and Input in C++ 

// VARIABLE DECLARATIONS

A computer's main working memory is 
made up of many locations, each of which is 
capable of storing just a 1 or a 0. However, 
programmers don't write in machine language.

So, programming languages let you take a 
section of that memory, of 1s and 0s, and 
use it for your own purposes. This section of 
memory is called a variable. Think of a variable 
as a box that can hold different values—that is, 
it can vary in what it holds. 

In C++, in order to use a variable, you first 
have to declare it. In other words, you have 
to write in your program an instruction to 
the computer that says, "I want you to set 
aside a box of memory for me to use as a 
variable." That operation—saying that you 
want a particular variable—is called the 
variable declaration. 

Every variable declaration needs 2 things: a 
type and a name. For example, you could 
declare an integer-type variable that you name 
year. The code for that would be int year, 
where int is short for integer—any counting 
number, such as 0, 1, 2, or even −10.

In the calorie-counting program, the line 
int carb_grams (7) gives the 2 pieces of 
information you need to declare a variable: the 
type of variable (int) and the variable name 
(carb_grams). 

The variable name is the way you'll refer to 
the box of memory. This variable name is 
often called the identifier, because it's the way 
you identify which box of memory you are 
referring to. When you refer to carb_grams in 
your program, you'll be referring to that box of 
memory—and, more specifically, to the value 
contained in that box of memory. 

Likewise, the next line of code (8) is another 
variable declaration. You're telling the 
computer: "Set aside another box of integer-
type memory called protein_grams."

Every variable declaration sets aside a box of 
memory, and that box will have some value 
inside of it. But setting aside a box of memory 

that's just a bunch of 1s and 0s would be a 
pain to deal with—if you had to write in the 1s 
and 0s of binary yourself.

The way you get the ability to write variables 
in a form you understand is with the variable 
type. When you declare a variable, you first 
tell the computer what the type of that 
variable will be. 

In the example program (Program 2_1 on 
page 18), the type is int, which means 
that the programmer can think of the box 
as containing an integer. The computer 
will handle the process of converting that 
integer to and from the binary form. As a 
programmer, you just say that you want a box 
of memory and declare the type of data that 
will be in it.

RULES FOR NAMING VARIABLES
 » Names have to begin with a letter. Besides letters, it's also possible to start with the 
underscore character, but you should not do this, because it is usually reserved for 
special things in the compiler that come up in more advanced systems programming. 

 » As for the rest of the name, you can use letters, underscore characters, or numbers. 

 » There are a few dozen special words in C++, often called keywords or reserved 
words, that are already used for other things, so you can't use those. For example, 
you cannot name a variable namespace or using. There are also a few predefined 
identifiers, such as main, that would be possible to declare but that you should just 
avoid in your own variable names.

http://www.thegreatcourses.com


g

20Lecture 02 | Variables, Computations, and Input in C++ 

Each variable declaration will have 2 parts: a 
variable type, followed by a variable name. 
In your code, there are 4 variables being 
declared. Each one is of type integer, and 
they have different names: carb_grams, 
protein_grams, fat_grams, and calories 
(which is the variable you're looking to 
calculate).

To avoid typing int over and over, you can 
put all of your variable declarations on one 
line. Just begin by telling the computer the 
type for all the variables on that line: int.

Then, you can just list each of the variables 
you want to declare, separated by commas. 

As long as you follow the rules, choosing 
the names for variables is up to you. But 
choosing good variable names is one of 
the most important things you can do to 
make your code more understandable—to 
yourself and to others. 

So, as you choose variable names, choose 
names that give a clear sense of the 
meaning of what that variable is intended 
to hold. Don't choose names that are too 
short or too long. Also, try to be consistent 
in your names: For example, if you named 
a variable carb_grams, you should pick a 
name like fat_grams rather than one like 
grams_of_fat. 

What if you wanted to get more precise 
and use decimals for the number of grams 
or calories in your program? 

A decimal is called a floating point because 
the location of the decimal floats around: 
Compare the decimal in 1.1 with 99.999. 

To designate a variable as a floating-point 
type, you use float. 

So, you'd just go through your program 
and replace every int with a float (g). 

Once you've declared variables, whether as 
integers or floats, you need to be able to 
use them—to actually store information in 
that box of memory and look at it later.

Click here to see the solution.

Exercise 1

Which of the following would be OK 
to use as variable names?

tank_capacity
namespace
something
length2
left foot
account
Success!

i
2nd_account 

// Program 2_3

// Using floating-point 
variables

#include<iostream>

using namespace std;

int main() {

 float carb_grams; 

 float protein_grams;

 float fat_grams;

 carb_grams = 30;

 protein_grams = 5; 

 fat_grams = 15;

 float calories;

 calories = 4 * carb_grams 
+ 4 * protein_grams + 9 * 
fat_grams;

 cout << "There are " 
<< calories << " calories in 
this dish" << endl;

}

http://www.thegreatcourses.com


21Lecture 02 | Variables, Computations, and Input in C++ 

// VARIABLE ASSIGNMENTS

Assignment is written with a single 
equal sign, but it does not mean that 
2 things are set equal to each other. 
It means that the thing on the right is 
assigned to the variable on the left. 
That's why it's better to say "gets" or 
"is assigned" instead of "equals" when 
you read a line of code out loud.

Remember that variables can vary 
in value; they aren't stuck with the 
first value they are assigned. This is 
why the single equals symbol means 
assignment, not permanent equality. 
At any later time, you can assign a 
new value in the box, replacing the 
old one. 

Let's go back to the original program for 
counting calories (Program 2_1 on page 
18). After your declarations of type and 
name, you can see that there are 3 variable 
assignments (d). Each of these lines has the 
same form: a variable name on the left, an 
equal sign, and a value on the right.

This is the general form for any assignment 
statement. When this code is executed, the 
value on the right side is placed into the 
variable on the left side—it's placed into the 
box. It replaces any other value already in 
that box. 

So, if you have a line like carb_grams = 10, 
that means that the box of memory that you 
call the variable carb_grams will have the 
value 10 assigned inside of it.

Let's see how the first few lines of the code 
work in memory. 

First, you have a variable declaration, declaring 
a box of memory for an integer variable 
named carb_grams. 

Next, the same thing happens when you 
declare an integer variable for protein_grams. 

And you declare an integer variable for 
fat_grams. 

So, at this point, you have 3 different integer 
areas of memory with 3 different names.

Next, you assign the value 30 to carb_grams. 
This means that the box of memory for 
carb_grams now contains the number 30.

Then, you assign 5 to protein_grams. So, that 
variable now holds the value 5.

Finally, fat_grams gets the value 15. 

When you first declare a variable, it's a good 
idea to set an initial value to be in the variable. 
It turns out that this is easy to do: You can 
combine the variable declaration with an 
assignment. 

int carb_grams = 30;
int protein_grams = 5;
int fat_grams = 15; 

Variables wouldn't do you much good if you 
couldn't ever use the value they hold. When 
you see a variable name on the right side 
of the assignment operator, you can think 
of what's there as meaning "the value this 
variable holds." 

http://www.thegreatcourses.com


22Lecture 02 | Variables, Computations, and Input in C++ 

Click here to see the solution.

Exercise 2

Exercise 3

Write a program that has 2 variables: 
weeks and days. Initialize weeks to 
20. Then, have your program calculate 
the number of days and output a 
statement giving this information. 

Click here to see the solution.

Try reading a short program. Can you 
figure out what values this program 
outputs? 

1 // Program 2_9
2 // What does this output?
3 #include <iostream>
4 using namespace std;
5 
6 int main() {
7  float x = 3.0;
8  float y;
9  float z;
10  y = x; 
11  z = x * y;
12  x = 5.5;
13  cout << x << " " << y << " " << 

z << endl;
14 }

Let's look at the computation for calories, 
where you are using the variables carb_
grams, protein_grams, and fat_grams. This 
is a mathematical calculation, and * means 
multiplication (e). 

In this line of code, you're adding together 4 
times the value stored in carb_grams, 4 times 
the value stored in protein_grams, and 9 
times the value stored in fat_grams. 

So, here's the calculation the computer will be 
doing for you: 

 » carb_grams holds the value 30, so 4 times 30 

is 120. 

 » protein_grams holds the value 5, so 4 times 5 

is 20. 

 » fat_grams has the value 15, so 9 times 15 is 135. 

Adding all of those together gives you 275.

Going further, you can have an output line 
where you're streaming to cout first some 
text, then a variable, and then some more 
text (f). 

First, you have the text There are. Next, you 
have the variable calories. When you get to 
this variable name, what will be output is the 
value that's in the variable calories, which in 
this case is 275. Then, you stream out some 
more text, calories in this dish, and finally 
use an end-of-line command to end the line of 
output text. And remember, you always need a 
semicolon to end the command. 

The net result when you run this program 
will be to output one line: There are 275 
calories in this dish. 

// COMPUTING CALORIES

It is your program's job to calculate the value, and you assign that value to the 
variable calories. Notice that you first calculate the value on the right side and 
then assign that to the variable on the left.

  calories = 4 * carb_grams + 4 * protein_grams + 9 * fat_grams;

http://www.thegreatcourses.com


23Lecture 02 | Variables, Computations, and Input in C++ 

// INCREMENTING VARIABLES

Any time you make an assignment, you want 
to first evaluate the code on the right side 
and then, once you know the value, assign 
the resulting value to the left side. In this 
example, a line has been added that you might 
encounter if you were adding extra butter, or 
other fat, to the recipe (13). It's still fat, so you 
don't need a new variable. Instead, the new 
line of code is fat_grams = fat_grams +1. 

The way to think about this is that you first 
evaluate the right side, substituting in the value 
of any variables. In this case, you start with the 
value of fat_grams at 15. So, the right side of 
this statement evaluates to 15 + 1, or 16. You 
then assign that value, 16, to the variable on 
the left. It turns out that the variable that gets 
the new value is again fat_grams, but that's 
not a problem—you've already figured out the 
value to use on the right side. 

The end result is that the value stored in the 
variable fat_grams has been increased by 1.

That operation—where you take a value of a 
variable, add something to it, and then assign 
the end result back to the original variable—
is fairly common. You often want to modify a 
value rather than assign a totally new value. 

In fact, modifying existing variables like this 
is such a common operation that C++ has a 
shorthand way of writing this operation. 

// Program 2_10

// Using a variable name on both sides of the assignment statement

#include<iostream>

using namespace std;

int main() {

 int carb_grams;

 int protein_grams;

 int fat_grams; 

 carb_grams = 30;

 protein_grams = 5;

 fat_grams = 15; // First we assign a value of 15

 fat_grams = fat_grams + 1; // Evaluate right side first, then 
assign to left

 int calories;

 calories = 4 * carb_grams + 4 * protein_grams + 9 * fat_grams;

 cout << "There are " << calories << " calories in this dish" 
<< endl;

}

http://www.thegreatcourses.com


24Lecture 02 | Variables, Computations, and Input in C++ 

The way this is done is with the notation +=. 
For example, when you have the += set to 1, 
it's doing exactly what you just saw—it takes 
the current value of the variable, adds the 
amount 1 on the right side to it, and stores the 
new result as the value of the variable. 

In general, the variable is increased by 
whatever the amount on the right side is. So, 
the line you see above, fat_grams += 1, is 
doing the same thing as the line from before: 
fat_grams = fat_grams + 1.

This works the same for subtraction. If you 
have money in the bank and withdraw $100, 
you have money_in_bank -= 100.0.

This also works for multiplication. If you have 
rabbits, then pretty soon you may triple your 
number—in other words, num_rabbits *= 3.

These compact operators can take any 
number, but the most common is increasing a 
variable by the number 1. 

Think about counting: If you have a number, 
you usually count by 1s, increasing the 
number by 1 each time. You say that you're 
incrementing the variable. 

An even more compact way you can express 
incrementing is with the ++ operator. 

The value of 1999 ++ would be 2000.

In your code, then, you can write fat_
grams++. 

So, you have 3 ways to write the same line of 
code, and they all do basically the same thing:

 » fat_grams = fat_grams + 1
 » fat_grams += 1
 » fat_grams++

All 3 work the same: The value in the variable 
fat_grams is increased by 1. And because 1 
gram of fat is 9 calories, you end up with 9 
more calories than the previous result—284 
instead of 275.

Just like there's ++, there's also --, which will 
decrement by 1. If you used 1 less gram of fat 
in your recipe than usual, then you could write 
fat_grams -- and would end up with 9 fewer 
calories—266 instead of 275.

C++ also lets you write the increment operator 
before the variable name, but these 2 methods 
don't always mean quite the same thing. 

Putting ++ after the variable—for example, 
x++—means that you increment the value of 
the variable to something new after doing the 
parts of the command that were already there.

Here, printing x++ gives the initial value of 1.

Putting ++ before the variable—for example, 
++x—means that you increment to a new value 
of the variable before doing other parts of the 
command.

So, in this code, printing ++x will print the new, 
updated value of 2.

Now you know where the language 
C++ gets its name! The "++" means 
the next increment above the 
previous value. In the case of C++, it's 
the next language after C.

13  fat_grams += 1; // Adds 1 to 
the value currently stored in 
variable

// Program 2_14

// Program to print x++

#include <iostream>

using namespace std;

int main() {

 int x = 1;

 cout << x++ << endl << x << endl;

}

8  cout << ++x << endl << x << endl;

http://www.thegreatcourses.com


25Lecture 02 | Variables, Computations, and Input in C++ 

// HOW C++ SUPPORTS MATHEMATICAL FUNCTIONS

Let's say you have 2 variables, a and b, and 
they're assigned the values 12 and 3. Notice 
that you can stream an expression like a+b 
directly to output. When this kind of line is 
executed, the math will be done first and the 
result is what's output. 

In this case, outputs work as you'd expect:

 » a+b is 15
 » a-b is 9
 » a*b is 36
 » a/b is 4

How does this work when division doesn't 
occur evenly? For example, what happens if 
you divide 7 by 3?

When C++ sees division by 2 integers, it does 
integer division, meaning that it returns only 
the quotient, with no remainder. Because 3 
goes into 7 twice, the result is 2. 

If you want to find the remainder from 
division, you can use the modulus operation, 
which is represented by %. That will give you 

only the remainder—not the quotient—when 
one number is divided by another. So, if you 
combine integer division with modulus, you 
can get the quotient and remainder from any 
division operation.

In Program 2_18, the first cout line will 
output the quotient, 2. The second cout 
line, where you stream out a%b, will output 
the remainder, 1, which is the remainder of 7 
divided by 3.

// Program 2_17

// Integer Division

#include <iostream>

using namespace std;

int main()

{

 int a, b;

 a = 7; 

 b = 3;

 cout << a + b << endl; // Addition

 cout << a - b << endl; // Subtraction

 cout << a * b << endl; // Multiplication

 cout << a / b << endl; // Division of INTEGERS (no 
remainder)

}

// Program 2_18

// Modulus and integer division

#include <iostream>

using namespace std;

int main()

{

 int a, b; 

 a = 7;

 b = 3;

 cout << a / b << endl; // INTEGER Division (no 
remainder)

 cout << a % b << endl; // MODULUS (the remainder 
from division)

}

http://www.thegreatcourses.com


h

26Lecture 02 | Variables, Computations, and Input in C++ 

// INPUT

Input is handled in a very similar way as 
output. Values are streamed in to variables. 
You get your input from the user typing in 
data into a window. This window is again 
referred to as the console, so the term cin is 
used to designate that you have input from 
the console.

Just like the output indicated that the stream 
of information should flow from variables 
leftward into cout, for input, the information 
will flow rightward from cin to the variables. 
So, you'll use >> to designate this; the direction 
of the stream of data is from cin to the 
variables.

Look at this modified calorie-counting code. 
First, there is a stream operator with output 
for the console, giving the user instructions 
on what to do (10). In this case, the user is to 
enter the grams of each type.

Next, you have 3 cin lines to indicate input 
that you'll get from the console (h). 

The first of these indicates that the first thing 
the user types will be stored in the variable 
carb_grams. The second thing the user enters 
will go into protein_grams, and the third will 
go into fat_grams.

// Program 2_19

// Compute calories for dish based on user input

#include<iostream>

using namespace std;

int main() { 

 int carb_grams;

 int protein_grams;

 int fat_grams;

 cout << "Enter the number of grams of carbohydrates, 
protein, and fat, separated by spaces." << endl;

 cin >> carb_grams; // Read in grams of each

 cin >> protein_grams;

 cin >> fat_grams;

 int calories;

 calories = 4 * carb_grams + 4 * protein_grams + 9 * 
fat_grams;

 cout << "There are " << calories << " calories in this 
dish" << endl;

}

http://www.thegreatcourses.com


27Lecture 02 | Variables, Computations, and Input in C++ 

In short, now the user can choose the grams 
of each type instead of having those values 
stuck on the initial values set in the code. 

If you run the program and enter the values 10, 
20, and 30, for example, then you get an output 
telling you that there are 390 calories in 
this dish; that is, a dish with 10 grams of 
carbohydrates, 20 grams of protein, and 30 
grams of fat will have 390 calories.

Just like the output streams could be 
combined with multiple stream operators on 
each line, you can combine multiple input 
stream operators on one line. The input line 
you see here is the same as the 3 lines shown 
previously. 

You still read the first piece of entered data 
into carb_grams, the second into protein_
grams, and the third into fat_grams. Running 
the program gives the same output as before.

What if you wanted to ask users for carb, fat, 
and protein grams using 3 different questions? 

You could just have 3 different cout output 
lines, each saying what to enter, as shown in 
Program 2_21. Each is followed by a separate 
cin input line, reading values in to each of the 
variables. 

READINGS
a Stroustrup, Programming Principles and Practice Using C++, chap. 3 and sections 4.1–4.3.

b Lippman, Lajoie, and Moo, C++ Primer, sections 2.1–2.2.

c Ousterhout, A Philosophy of Software Design, chap. 14 (re: names).

11  cin >> carb_grams >> protein_
grams >> fat_grams;

// Program 2_21

// Prompting user for multiple inputs

#include<iostream>

using namespace std;

 

int main() {

 int carb_grams;

 int protein_grams; 

 int fat_grams;

 cout << "Enter the number of grams of carbohydrates: ";

 cin >> carb_grams;

 cout << "Enter the number of grams of protein: ";

 cin >> protein_grams;

 cout << "Enter the number of grams of fat: ";

 cin >> fat_grams;

 int calories;

 calories = 4 * carb_grams + 4 * protein_grams + 9 * fat_grams;

 cout << "There are " << calories << " calories in this dish" << endl;

}

http://www.thegreatcourses.com


28Lecture 02 | Variables, Computations, and Input in C++ 

Exercise 2 Solution

Click here to go back to the exercise.

Exercise 3 Solution

Notice that you declare 3 variables: x, y, and z. The x is 
initialized to 3. You then assign x to y so that y also has 
the value 3. Next, z gets the value of x times y, which is 
3 times 3, or 9. So, at this point, both x and y are 3 and 
z is 9. Then, you assign the value 5.5 to x; y and z are 
not affected. So, when you stream the values of the 3 
variables to output with the cout statement, you get:

 5.5 3 9.

Click here to go back to the exercise.

Exercise 1 Solution

Good Names

Both tank_capacity and 
length2 are valid and 
somewhat descriptive. 

The i is also valid as a 
variable name. There are 
circumstances that you'll 
use a single letter like i 
for a variable; for example, 
in math, you might have a 
value like x and use i as a 
subscript or superscript. 

Valid Names  
(but not great choices)

Naming a variable something 
tells you too little about what 
it's supposed to hold. 

A name like account is not 
horrible, but it's not clear what 
value it stores: Is it the account 
balance, the account ID, the 
account name, etc.? A name 
like account_balance would 
be much easier to understand. 

Invalid Names

You cannot use a reserved keyword like namespace. 

You cannot have a space in a name, so left foot is 
not allowed; you need to use underscore if you want to 
separate words. 

A punctuation mark, such as an exclamation point, is not 
allowed in a name, so Success! is out.

Names cannot start with a number, so you cannot have 2nd_
account.

Click here to go back to the exercise.

Here's what that code might look like. 

1 // Program 2_7
2 // Program to convert 

weeks to days
3 #include <iostream>
4 using namespace std;
5 
6 int main() { 
7  int weeks = 20; 
8  int days;
9  days = weeks * 7;
10  cout << "There are 

" << days << " days in 
" << weeks << " weeks." 
<< endl;

11 }

1 // Program 2_8
2 // Initializing 

variables in declaration
3 #include <iostream>
4 using namespace std;
5 
6 int main() { 
7  int weeks = 20;
8  int days = 

weeks * 7;
9  cout << "There are 

" << days << " days in 
" << weeks << " weeks." 
<< endl;

10 }

http://www.thegreatcourses.com


29Lecture 02 | Variables, Computations, and Input in C++ 

// QUIZ

1 a How many variables are declared in the following program?

b What is the output?

1 #include<iostream>
2 using namespace std;
3 
4 int main() {
5  int score = 10;
6  int dozen = 3;
7  int totalnum;
8  totalnum = 20 * score;
9  totalnum += 12 * dozen;
10  cout << "There are " << totalnum << " items." 

<< endl;
11 }

2 What one or 2 lines of code could be put in this program to make it run 

correctly?

1 #include<iostream>
2 using namespace std;
3 
4 int main() {
5  float sidelength;
6  cin >> sidelength;
7  // One or 2 lines of code here
8  cout << "The area of a square with side length " 

<< sidelength << " is " << area << endl;
9 }

3 What is the output of the following program?

1 #include<iostream>
2 using namespace std;
3 
4 int main() {
5  int a, b, c, d, e;
6  a = 31 / 3;
7  b = 31 % 3;
8  c = 3;
9  d = c;
10  c++;
11  e = c;
12  e-=2;
13  cout << a << endl;
14  cout << b << endl;
15  cout << c << endl;
16  cout << d << endl;
17  cout << e << endl;
18 }

4 Imagine that you have a wall and want to know how many cans of paint 

will be needed to paint it. Read in the length and height of the wall and the 

number of square feet a can of paint will cover, and output the number of 

full cans of paint that you will use up when painting the wall.

Click here to see the answers.

http://www.thegreatcourses.com


30Lecture 02 | Variables, Computations, and Input in C++ 

// QUIZ ANSWERS

1 a There are 3 variables declared: score, 
dozen, and totalnum.

b The output is

There are 236 items.

Notice that totalnum first gets the value of 

20 times score. Because the variable score 

has the value 10, totalnum begins with the 

value 200.  Then, the += command is used 

to increase the amount in totalnum by 

the amount on the right side. Because the 

variable dozen has the value 3, multiplying 

12 times dozen gives 36.  This is then 

added to totalnum, giving a value of 236, 

which is output.

2 This is an example of 2 lines of code:

float area;
area = sidelength * sidelength;

This is an example of one line of code:

float area = sidelength * sidelength;

Notice that the output statement uses the 

variable area, so you must declare a variable 

named area.  Because the side length is a 

floating-point number, area should be of type 

float.  And to compute area, you can multiply 

the side length times itself and assign this value 

to area.  The calculation and assignment can be 

done either as an initialization or as a separate 

assignment statement.

3 The output is as follows:

10
1
4
3
2

Notice that all numbers are integers. So, 31/3 is 

integer division, and the result assigned to a is 

the quotient, 10.  

The % is the modulus operation, giving the 

remainder after division, so the result assigned 

to b is the remainder of 31 when divided by 3, 

which is 1.

Then, c is assigned the value 3, and because 

d is assigned the value of c, it also has the 

value 3.  Next, c is incremented (using the ++ 

operation).  This changes the value of c to 4; d 

is not affected.  Next, e is assigned the value of 

c, so e also has the value 4.  Finally, the value 

of e is reduced by 2, so it has the value of 2. 

Again, no other variables' values are changed.  

Thus, printing c, d, and e will print the values 4, 

3, and 2.

4 There are many possible solutions. Here is one 

of them:

1 // Calculate paint coverage
2 #include<iostream>
3 using namespace std;
4 
5 int main() {
6  float length, height, sqft, 

sqftpercan;
7  cout << "Enter the length 

of the wall: ";
8  cin >> length;
9  cout << "Enter the height of 

the wall: ";
10  cin >> height;
11  sqft = length * height; // 

Total square feet to paint
12  cout << "Enter how many 

square feet a can of paint 
covers: ";

13  cin >> sqftpercan;
14  float canstouse;
15  canstouse = sqft / 

sqftpercan;
16  cout << "You need " << 

canstouse << " cans of paint." 
<< endl; 

17 }

Click here to go back to the quiz.

http://www.thegreatcourses.com


31Lecture 03 | Booleans and Conditionals in C++

Booleans and 
Conditionals in C++

Having choices opens up possibilities, and conditionals are ways to 
make choices in programs. They offer a way of saying: "If this set 
of conditions is met, then do this." These choices allow you to have 
much more interesting and varied programs. In order for you to have 
a conditional, though, you need a way of specifying what a condition 
is. And to do this, you need a way of saying that a value can be either 
true or false. A variable defined as being true or false is a Boolean, 
named for George Boole, who developed a way to simplify logic.

03 IN THIS LECTURE:

Boolean Variables

Program 3_1

Program 3_2

Program 3_3

Program 3_6

Comparison Operators

Program 3_7

Program 3_9

Conditional Statements

Program 3_10

Program 3_11

Program 3_12

Program 3_14

Program 3_15

Quiz

Quiz Solutions

You already know that you can 
have variables of an integer type 
and variables of a floating-point 
decimal type. You can also have 
logic variables that are of a Boolean 
type. In C++, you can declare these 
variables to be of type bool, with a 
value of either true or false.

In this example, there are 2 Boolean 
variables: one called test_true 
that you initialize to the value true 
and one called test_false that you 
initialize to the value false.

Although there are 2 keywords—
true and false—C++ ultimately 
reads them as just the 2 possible 
values of a single bit.

When this program runs, the true 
value gets output as a 1, and the 
false value gets output as a 0.

true and false are defined 
keywords in C++.

// BOOLEAN VARIABLES
1 // Program 3_1

2 // Illustrating Boolean values

3 #include <iostream>

4 using namespace std;

5 

6 int main() {

7  bool test_true = true;

8  bool test_false = false;

9  cout << "test_true is: " << test_true << endl;

10  cout << "test_false is: " << test_false << 
endl;      

11 }

http://www.thegreatcourses.com


32Lecture 03 | Booleans and Conditionals in C++

One way to think about this is that a Boolean 
variable can only take on 2 values: true or 
false. In a computer, a bit can also have just 
2 values: 1 or 0. So, once your code has been 
compiled into a set of machine instructions, 
those variables you declared as Booleans 
could be stored in just 1 bit. And you'll use a 1 
to represent true and a 0 to represent false.

There are no special true or false values, just 
1 or 0. In fact, C++ interprets any value that's 
not 0 as true. In Program 3_2, the Boolean 
variable test_true is assigned the value 2. 
But when you print this out, you see that the 
variable has the value 1—that is, true.

The operations you can do on Boolean 
variables are also different. You don't add, 
subtract, multiply, or divide. Instead, for 
Booleans, there are 3 main operations: and, or, 
and not. These work in the same way that you 
might see in a logic course.

The not operation simply flips the Boolean 
value: true becomes false, and false 
becomes true.

In C++, you use ! to represent not. For 
example, !raining means "not raining" and 
!windy means "not windy."

In Program 3_3, you have 2 variables, with 
raining being true and windy being false. 
If you take !raining and !windy, you'll get 
the opposite values for each one—that is, 
false and true, respectively.

The and operation is used when you have 2 
different Boolean values—say, x and y. In logic, 
if you say "x and y," then that statement is true 

Notice that you put ! before the 
Boolean value that you want to take 
not of. 

// Program 3_2

// Any non-zero value is interpreted as true

#include <iostream>

using namespace std;

int main() {

 bool test_true = true;

 bool test_false = false;

 test_true = 2;

 cout << "test_true is: " << test_true << endl;

 cout << "test_false is: " << test_false << endl;

}

// Program 3_3

// Using ! (not) to reverse Boolean values

#include <iostream>

using namespace std;

int main() {

 bool raining = true;

 bool windy = false;

 cout << "raining is: " << raining << endl;

 cout << "windy is: " << windy << endl;

 cout << "Not raining is: " << !raining << endl;

 cout << "Not windy is: " << !windy << endl;

}

http://www.thegreatcourses.com


a

33Lecture 03 | Booleans and Conditionals in C++

if, and only if, both "x" and "y" are true. This 
is not addition! It's not enough for one to be 
true; they both have to be true for the overall 
statement to be true.

And is represented in C++ by &&.

The or operation again takes 2 Boolean 
values, but it is true if either one of the 2 is 
true. It's also true if both are true.

In C++, or is represented with ||.

The 3 basic Boolean operations—and, or, and 
not—can be combined to make more complex 
logical operations. And there is an order 
of precedence in the way that these logical 
operators are evaluated: Your computer will 
evaluate not first, then and, and then or.

Click here to see the solution.

Exercise 1

Is this overall expression true or false? Work through the expression from the 
innermost parentheses outward.

(((T && F) || (!(T || F))) && ((!F) && ((!F) || T)))

Be careful to use 2 ampersands to 
indicate and. If you use only one, 
that's known as a bitwise and, and 
that's not what you want.

You'll probably find the character | 
above the backslash key on the right 
of your keyboard above the return or 
enter key.

Always enclose your Boolean 
expressions in parentheses to ensure 
you don't have any weird behavior 
due to order of operations.

You can specify the order with parentheses. 
For example, in Program 3_6, both of these 
expressions (a) are identical, and they 
evaluate to true. However, it's easier to follow 
the second one. Really, there's no downside to 
putting in parentheses, so put them in to make 
sure your expressions are clear. 

In fact, you'll notice that even on the first line 
(7), there are parentheses around the whole 
expression. 

If you leave the parentheses out, you'll get an 
error when you try to compile! 

That's because the stream operator, <<, takes 
precedence over the and and or operators. 
So, the code reads as though you're trying to 
output just not true on the first line, and then 
it encounters an or that doesn't make sense. 
The same thing happens on the second line.

// Program 3_6

// Boolean order of operations

#include <iostream>

using namespace std;

int main() {

 cout << (!true || !false && true) << endl;

 cout << ((!true) || ((!false) && true)) << endl; 

}

http://www.thegreatcourses.com


34Lecture 03 | Booleans and Conditionals in C++

One of the most common ways of determining 
whether a Boolean is true or false is with 
comparison operators.

When you compare 2 values in C++, the result 
is a Boolean—either true or false.

You can assign the result of the comparison 
to a Boolean variable, such as by 
writing Team1Winner = (Team1Points > 
Team2Points).

Or you can use a comparison in a Boolean 
expression, such as by writing (heartrate > 
100) || (respiration > 30).

Program 3_7 shows several comparisons. 
You have 2 variables, Team1Points and 
Team2Points, initialized to some values—in 
this case, 17 and 20, respectively (7).

You can compare to see if Team1Points is less 
than Team2Points using < (8). The answer is 
true, and the output will show a 1. The same 
is true if you use a less-than-or-equal-to (<=) 
comparison (9).

You can also make a greater-than (>) 
comparison (10) or a greater-than-or-equal-
to (>=) comparison (11). In this case, the 
answers will be false, because Team1Points 
is not greater than, or greater than or equal to, 
Team2Points.

You can assign the results of a comparison 
to a Boolean variable. In the snippet 
of code at right, there is a water_temp 
variable and Boolean variables can be 
created: is_freezing and is_boiling. 
These are set by comparing water_temp to 
32° and 212° Fahrenheit. In this example, 
the temperature 35.3° is neither, so both 
comparisons will return false, and thus 
both Boolean values are false.

// COMPARISON OPERATORS

// Program 3_7

// Comparisons: less than/greater than to give a 
Boolean result

#include <iostream>

using namespace std;

int main() {

 int Team1points = 17, Team2points = 20;

 cout << (Team1points < Team2points) << endl;

 cout << (Team1points <= Team2points) << endl;

 cout << (Team1points > Team2points) << endl;

 cout << (Team1points >= Team2points) << endl;

}

float water_temp = 35.3; // Fahrenheit

bool is_freezing = (water_temp <= 32);

bool is_boiling = water_temp >= 212;

http://www.thegreatcourses.com


35Lecture 03 | Booleans and Conditionals in C++

You often want to see if 2 things have the same value or don't have the 
same value. For this, you want the equality and inequality operators:

 » To check whether 2 things are equal, you use ==.

 » To check for inequality, you use !=.

Let's say that you're operating a business and you want to give a 
discount to anyone under 18 or anyone who is 65 or older.

After reading in an age, you can set a Boolean variable, eligible_
for_discount, to be the result of a Boolean expression containing 
comparisons (11). You can check to see if the age is less than 18 or if it 
is greater than or equal to 65 by writing this: eligible_for_discount = 
((age < 18) || (age >= 65)).

This Boolean variable eligible_for_discount will be true if either the 
age is less than 18 or the age is greater than or equal to 65—otherwise, 
it will be false. For example, for age 10, the program will output a 1 for 
true; however, for age 45, you get a 0 for false.

 » Remember that a single equal sign is not saying 
"equals"; it's saying "assign."  And if you are working with 
comparisons, you need to use 2 equal signs together.

 » Because there's no "not equals" symbol on the keyboard, 
you instead use an exclamation point to mean "not" and 
then the equal sign (!=) to mean "not equal to." 

// CONDITIONAL STATEMENTS

The real power of Boolean values and 
expressions comes when they get put into 
conditional statements. A common term for 
a conditional statement is an if-then-else 
statement. The simplest form is the if-then 
statement. A conditional statement starts with 
the keyword if.

Next, in parentheses, is a single Boolean value. 
The Boolean value could come in many forms. 
It could be a simple value, such as true or 
false, but the value is more likely to be given 
by a Boolean variable—or even a Boolean 
expression, made up of comparisons and 
Boolean operations.

if (true) // simple Boolean value

if (isFreezing) // Boolean variable

if ((age < 18) || (age >= 65)) 
// Boolean expression

// Program 3_9

// Illustrating comparisons to create Boolean value

#include <iostream>

using namespace std;

int main() {

 int age;

 cout << "Enter your age: ";

 cin >> age;

 bool eligible_for_discount;

 eligible_for_discount = ((age < 18) || (age >= 65));

 cout << eligible_for_discount << endl;

}

http://www.thegreatcourses.com


36Lecture 03 | Booleans and Conditionals in C++

Regardless of which way the Boolean value is 
specified, it needs to appear in parentheses. 
This Boolean is the condition of the conditional 
statement.

Then, after the parentheses is the command to 
be followed if the Boolean value is true; that 
is, the command that follows the if statement 
only gets executed if that Boolean value in the 
parentheses evaluates to true.

If there's just a single command to execute, 
then you can write that command, just like 
any other.

There are 3 common ways of writing this:

1 It could be written right after the parentheses 

on the same line.
2 It could be written on the next line. If this is 

done, it is common to indent the command 

anywhere from 2 to 4 spaces. Indenting is just a 

way of showing (to people) that the command 

only gets executed if the if statement is true.
3 Probably the most common option is to 

put curly braces around the command. The 

computer does read the curly braces, and 

what they mean is that everything inside of the 

curly braces counts as the thing to do if the 

Boolean is true. That way, you can have lots of 

commands—not just one—executed when the 

Boolean is true. When doing this, it is again 

common to indent each of the commands that 

should be executed to show that they're only 

encountered when the Boolean is true. The 

closing of the curly braces is commonly put on a 

new line, not indented.

Always put curly braces 
around the result of the if 
clause, even if there's only 
one command. If you leave off 
the curly braces and later add 
another command as part of 
the if statement, it's easy to 
forget to add the curly braces. 
Get in the habit of always using 
curly braces for the if clause 
to avoid problems later on.

Suppose you want to determine whether someone 
had a discount and give them a message that they're 
eligible for the discount.

You can do this with an if statement. You write if, 
followed by parentheses and your Boolean expression: 
It will be true if the age is less than 18 or greater 
than or equal to 65. Then, you write your commands, 
starting with curly braces, and then our output 
statement: You're eligible for a discount!.

If you run this program and enter a valid age, such as 
10 or 70, you'll get that message printed out. If you 
enter some other age, such as 45, you won't.

// Program 3_10

// Illustrating an if statement

#include <iostream>

using namespace std;

int main() {

 int age;

 cout << "Enter your age: ";

 cin >> age;

 if ((age < 18) || (age >= 65)) {

  cout << "You're eligible for a discount!" << endl; 

 }

}

http://www.thegreatcourses.com


b

37Lecture 03 | Booleans and Conditionals in C++

What if you wanted to output something 
different whenever the person was not eligible 
for a discount? This is where the full version of 
if-then-else comes in handy.

By adding an else clause, you can extend 
the if statement to also state what command 
should be done if the Boolean value is false.

Right after the command, or set of commands, 
in curly braces that should be executed if the 
Boolean is true, you write the word else. 
Notice that the closing of the previous curly 
braces might be at the start of the else line.

After the else, you give the command you 
want to execute if the condition is false. If 
you want to execute more than one command, 
you again need to enclose them in curly 
braces.

Just like before, it is helpful to indent to show 
which commands belong to which part of the 
statement. Your IDE will probably indent the 
correct amount for you automatically, though 
sometimes if you write commands out of 
order, it won't. By indenting consistently, it'll 
be easy to see which commands are executed 
when the condition is true and which are 
executed when it's false.

In the example, an else clause is added (b), 
so you have an if-else statement—commonly 
called an if-then-else statement, even though 
the word then isn't explicitly used. 

The else clause will print out a message when 
the Boolean expression is false, such as: 
Sorry, no discount is available. But our 
prices are so low you won't even notice!.

Now if you run this code and enter an age 
that's eligible for a discount, you still get the 
original message. And if you enter an age 
that's not eligible, you get the new message 
instead.

As with then commands, get in the 
habit of always using curly braces for 
the else statement.

// Program 3_11

// Illustrating an if-else statement

#include <iostream>

using namespace std;

int main() {

 int age;

 cout << "Enter an age: ";

 cin >> age;

 if ((age < 18) || (age >= 65)) {

  cout << "You're eligible for a discount!" << endl; 

 }

 else {

  cout << "Sorry, no discount is available." << endl;

  cout << "  But our prices are so low you won't even notice!" 
<< endl;

 }

}

http://www.thegreatcourses.com


c

38Lecture 03 | Booleans and Conditionals in C++

Click here to see the solution.

Exercise 2

In this modified version of the Program 3_12, the curly braces following the else 
statement have been left off. What do you think will happen?

1 // Program 3_13
2 // Illustrating an if-else statement - missing curly braces
3 #include <iostream>
4 using namespace std;
5 
6 int main() {
7  int age;
8  cout << "Enter your age: ";
9  cin >> age;
10  float price;
11  if ((age < 18) || (age >= 65)) {
12   cout << "You're eligible for a discount!" << endl;
13   price = 5.0;
14  }
15  else
16   cout << "Sorry, no discount is available." << endl;
17   cout << "  But our prices are so low you won't even notice!" << endl;
18   price = 7.5;
19 
20  cout << "Your price is " << price << endl;
21 }

Notice that it's easy to extend the case to do 
more than one command inside of the curly 
braces. In Program 3_12, the code has been 
modified to have a new floating-point variable. 
Price will store the cost for that person. If 
there is a discount, the person will get a price 
of just $5, while if he or she doesn't get a 
discount, the price will be $7.50. Regardless 
of which price is set, the cout command at 
the end will output the price that person will 
have to pay. 

If you run this, you'll see that those eligible for 
a discount do indeed get a lower cost.

In that last set of code, notice that you ended 
up adding some additional lines into the set 
of commands as part of the if and else 
statements (c). That's another example of why 
it's good to use curly braces to group your 
commands together, even if you think you'll 
have only one command.

// Program 3_12

// Multiple operations within if 
and else clauses

#include <iostream>

using namespace std;

int main() {

 int age;

 cout << "Enter your age: ";

 cin >> age;

 float price;

 if ((age < 18) || (age >= 65)) {

  cout << "You're eligible for 
a discount!" << endl;

  price = 5.0;

 }

 else {

  cout << "Sorry, no discount 
is available." << endl;

  cout << "  But our prices 
are so low you won't even notice!" 
<< endl;

  price = 7.5;

 }

 cout << "Your price is " << 
price << endl;

}

http://www.thegreatcourses.com


d

e

39Lecture 03 | Booleans and Conditionals in C++

The commands you put in 
curly braces for an else 
clause can be just about any 
commands. That includes more 
if statements!

Let's look at some code used to 
calculate the shipping cost for a 
package.

First, there's weight and type 
of shipping. So, you have a 
few variables: a floating-point 
package_weight (7) and a 
Boolean indicator of whether it 
is send_priority shipping or 
not (8). In this case, package_
weight is initialized to 5.0 and 
send_priority is initialized 
to true.

As for cost, the system is that 
if there is priority shipping, all 
packages weighing less than 
3.5 have a fixed cost of 10.00, 
and otherwise the cost for 
priority is based on weight, 
while all nonpriority packages 
just have a cheaper cost based 
on weight alone.

So, the code for price starts 
with an if statement to 
check whether the package 
is to be sent priority or not. 
There's also an else clause to 
handle situations when it's not 
priority (d).

In the case where you have 
priority shipping, you have 
another if statement (e). This 
one checks if package weight is 
below 3.5; if so, it sets a fixed 
cost of 10.00 and otherwise 
assigns a cost given by weight 
times 3.0.

Having one if statement inside 
of another is called nesting. It's 
even possible to have multiple 
levels of nesting.

As for the case where you 
don't have priority shipping, 
this is where the else clause 
of the outermost if statement 
comes in (19). In this case, the 
price is a lower rate of weight 
times 1.5.

You should use nesting whenever the code you have 
makes natural sense to organize in that way—where you 
want to make one choice and then another.

// Program 3_14

// Illustrating nested if statement

#include <iostream>

using namespace std;

int main() {

 float package_weight = 5.0;

 bool send_priority = true;

 float price;

 if (send_priority) {

  if (package_weight < 3.5) {

   price = 10.00;

  }

  else {

   price = package_weight * 3.0;

  }

 }

 else {

  price = package_weight * 1.5;

 }

 cout << "Your price is " << price << endl;

}

http://www.thegreatcourses.com


f

g

40Lecture 03 | Booleans and Conditionals in C++

There's another way of writing if statements 
that is common and useful. Suppose you have 
some sort of tiered pricing system, similar to 
the one from before, but you want kids under 
3 to be free, those from 3 to 5 to cost $1, those 
from 6 to 10 to cost $3, those from 11 to 17 to 
cost $5, and everyone else to cost $6.

Program 3_15 shows a bunch of nested if 
statements. You start by checking whether the 
age is less than 3, and if so, set a cost of 0.0. 
Otherwise, you go to the else clause.

In the else clause, you have another if 
statement, this time checking whether the 
age is less than or equal to 5. Again, you set 
a cost in that case; otherwise, you go to 
another else clause. And this continues until 
you handle all the cases.

When you look at this code, all those nested 
statements are confusing, especially when 
your conditions aren't that difficult.

In these instances, it's helpful to remember 
that in C++, the spacing and line breaks don't 
actually matter. Thus, you can reorganize the 
indentation, tabs, and organization to make 
this more readable.

First, notice that in this situation, you have a 
series of else clauses, each of which contains 
a single if statement (f).

This is the one situation where you should 
not use curly braces, and not indent the if 
statement. If you get rid of the curly braces 
when there is just another if statement inside 

and move that if up to the previous line, the 
code becomes much cleaner and easier to 
read (g).

Notice that you still have the else if 
combinations, but you organize them in a way 
that makes it much easier to see the different 
cases and what to do in each one. You can 
read down the list of conditionals and find the 
first one that evaluates to true. Or, if none 
evaluate to true, then you have a final else 
clause. Although this code works exactly the 
same as the previous code, it's much easier 
to follow. This way of organizing the code is 
called an else if structure, and it's a good 
idea to use it in cases like this, where you want 
to select one of several related options. 

// Program 3_15

// Illustrating mulitple if-else 
statements

#include <iostream>

using namespace std;

int main() {

 int age = 10;

 float cost;

 if (age < 3) {

  cost = 0.0;

 }

 else {

  if (age <= 5) {

   cost = 1.0;

  }

  else {

   if (age <= 10) {

    cost = 3.0;

   }

   else {

    if (age <= 17) {

     cost = 5.0;

    }

    else {

     cost = 6.0;

    }

   }

  }

 }

 cout << "Your cost is " << 
cost << endl;

}

12  else if (age <= 5) {

13   cost = 1.0;

14  }

15  else if (age <= 10) {

16   cost = 3.0;

17  }

18  else if (age <= 17) {

19   cost = 5.0;

20  }

21  else {

22   cost = 6.0;

23  }

http://www.thegreatcourses.com


41Lecture 03 | Booleans and Conditionals in C++

Exercise 2 Solution

Click here to go back to the exercise.

I f you run the code, you find that even people who should have gotten a discount got a message meant for those who didn't and 
that everyone received the same cost, $7.50. Why did that happen?

When you get to the else statement, because there were no curly braces, only the first command after the else applied to the 
else clause. The other lines—the second cout and setting price to 7.5—will run for every situation. The fact that they're indented 
doesn't matter to the computer; they need to be in curly braces if they only apply to the else.

This is the type of mistake that happens easily, even to experienced programmers, when people aren't careful to put curly braces 
around their if clauses.

Exercise 1 Solution

Click here to go back to the exercise.

The overall expression is false.

READINGS
a Stroustrup, Programming Principles and Practice Using C++, section 4.4.1.

b Lippman, Lajoie, and Moo, C++ Primer, sections 4.1, 4.2, and 5.3.

http://www.thegreatcourses.com


42Lecture 03 | Booleans and Conditionals in C++

// QUIZ

1 Answer the following questions for a Boolean variable.

a What is the type used when declaring a Boolean variable?

b If the variable has the value false and it is output, what would be 

output?

c If the variable has the value true and it is output, what would be 

output?

d If you assign 123.45 to the variable, what value will it have?

2 What are the symbols used to do each of the following?

a Compare whether 2 values are not equal to each other

b Compare whether 2 values are equal to each other

c Take the not of a Boolean value (convert true to false or false 

to true)

d Take the and between 2 Boolean values: something that is true if and 

only if both values are true

e Take the or between 2 Boolean values: something that is true if 

either or both values are true, and false otherwise.

3 What would be the value of the following Boolean expression?

!((true && true) || (false && true)) || (!true || (!false 
&& true))

4 What is the output of the following program?

1 #include<iostream>
2 using namespace std;
3 
4 int main() {
5  int a = 3;
6  int b = 4;
7  int c = 3;
8  if (a==b) {
9   if (b!=c) {
10    cout << "Output 1" << endl;
11   } else {
12    cout << "Output 2" << endl;
13   }
14  } else {
15   if (b!=c) {
16    cout << "Output 3" << endl;
17   } else {
18    cout << "Output 4" << endl;
19   }
20  }
21 }

5 Write a program that asks a user for a water temperature and reports 

whether the water is ice, freezing, liquid, boiling, or vapor.

Click here to see the answers.

http://www.thegreatcourses.com


43Lecture 03 | Booleans and Conditionals in C++

// QUIZ ANSWERS

1 a bool

b 0

c 1

d true (remember: any nonzero value is treated as true)

2 a !=

b ==

c !

d &&

e ||

3 true:

4 Output 3

Notice that because the first conditional (a==b) is false (a is 3 
and b is 4, so they are not equal, and the comparison is false), 
the else clause is followed. The next step is for the nested 
conditional to check whether b is not equal to c (b!=c). Because 
b is 4 and c is 3, they are not equal, so the comparison is true. 
So, the first clause is followed, and the line Output 3 is output.

5 There are multiple possible answers. Here is one:

1 // Report phase of water
2 #include<iostream>
3 using namespace std;
4 
5 int main() {
6  float temperature;
7  cout << "Enter a water temperature in 

Fahrenheit: ";
8  cin >> temperature;
9  if (temperature < 32) {
10   cout << "Ice" << endl;
11  } else if (temperature == 32) {
12   cout << "Freezing" << endl;
13  } else if (temperature < 212) {
14   cout << "Liquid" << endl;
15  } else if (temperature == 212) {
16   cout << "Boiling" << endl;
17  } else {
18   cout << "Vapor" << endl;
19  }
20 }

Click here to go back to the quiz.

http://www.thegreatcourses.com


44Lecture 04 | Program Design and Writing Test Cases in C++

// THE STRUCTURE OF A C++ PROGRAM

Although code writing is very important, there's more to making a program than 
just writing code. Considerations like design and testing are just as important.

04 IN THIS LECTURE:

The Structure of a C++ Program

Program 4_1

Program 4_2

Designing and Testing Your Program

Program 4_6_1

Program 4_6_9

Quiz

Quiz Answers

Program Design and 
Writing Test Cases in C++

It's often helpful to start a program with some 
sort of comment—what might be called a 
header comment—that gives some information 
about the purpose of the program (1, 2).

The next line is a pound-include (#include) 
line (3). The pound sign (#) is used to 
designate special commands that are given to 
the compiler, which is what will translate your 
program into machine instructions.

When a compiler looks at a program that it 
needs to process, it first identifies any lines 
that have #. These lines are processed first 
as special instructions to the compiler. These 
are called preprocessor commands, because 
they take place before processing the rest of 
the code.

The #include is by far the most commonly 
used, but there are a few other preprocessor 
commands, all starting with #:

 » #include statements can bring in new lines 

of code.

 » #define statements can modify code.

 » #ifdef statements (short for if defined) can 

choose lines of code.

The #include is a way of saying, "There is 
another file out there that contains some 
additional functions. Bring that file into this 
program." This gives you access to any 
functions in that other file.

For example, #include <iostream> gets 
you access to important input and output 
functionality, like cin and cout.

The #includes that you usually begin 
your program with import files to give 
you additional functionality. Those 
files are usually from the C++ standard 
libraries, which are installed with C++ 
and therefore are available whenever 
you need them. 

// Program 4_1

// Hello, World! program

#include <iostream>

using namespace std;

int main()

{

 cout << "Hello, World!" << endl;

}

http://www.thegreatcourses.com


45Lecture 04 | Program Design and Writing Test Cases in C++

The next line is the using namespace 
command. A namespace is a way of grouping 
various functions together. By saying using 
namespace, you are indicating which group of 
functions you're using. In this case, that's the 
std (short for standard) namespace. A way 
to think of a namespace is as a special name 
that needs to be added to the beginning of 
commands.

Here is how the code would look if you had to 
include the namespaces directly when using 
each command. Notice how you have to write 
std:: in front of cout and endl (7); this is the 
way to specify that those are defined in the 
std namespace.

There are big projects that might require this 
way of working. There might even be multiple 
namespaces, because different groups on 
a project often create new namespaces to 
clearly distinguish their code. But it can be 
a pain to keep writing std:: before each 
command for a small project where the 
scope of the using namespace std is clear. 
So, the line using namespace std lets you 
say, "Unless I specify otherwise, I'm using 
the standard namespace." And because this 
is a C++ command, not a command to the 
preprocessor, it ends with a semicolon.

In short, this is a line that saves typing and 
makes the rest of your code easier to read.

The next line in the code is the int main() 
line, which creates something called a 
function—a set of commands that gets 
executed together.

The parentheses show that it's a function, int 
means that it returns an integer, and main is a 
predefined name.

Note that main is a special function; it's the 
one that the compiler will recognize as the 
function to start with. The commands that 
come in the curly braces after main are the 
ones that will be executed first when the code 
is run.

Notice that main starts out with the term int. 
The way you can think of this is that the main 
program that results will have an integer value 
when it runs. This integer value has a meaning: 
If the program completes without an error, its 
value is 0; if there is an error encountered, it 
has some nonzero value. The particular value 
can vary based on the particular error and, 
for an experienced programmer, can give 
more information about the type of error 
encountered.

C++ gives you a lot of flexibility in terms of style. Unlike some other languages, C++ 
basically lets you space your code and indent however you want to. Sometimes, 
different people have different styles of formatting code. The style to use is based 
mainly on personal preference, unless you are part of a bigger project, where often 
coders try to match each others' styles for consistency. 

As you develop programs, you want to do so with a style that makes it clear 
what the intention of your code is. And that can involve choosing descriptive 
variable names, using good spacing and indentation, and organizing the code in a 
logical manner.

// Program 4_2

// Hello, World! without 
"using namespace std"

#include <iostream>

int main()

{

 std::cout << "Hello, 
World!" << std::endl;

}

http://www.thegreatcourses.com


46Lecture 04 | Program Design and Writing Test Cases in C++

// DESIGNING AND TESTING YOUR PROGRAM

How do you make sure your code is organized 
logically? This is where design comes in.

Usually, your program begins with some idea—
what you want to be able to do. Often, this is 
just a vague idea at the beginning; from there, 
you try to get specific. You need to determine 
exactly what you're doing—what you expect 
as input to the program, what computations 
you want to perform, and what you want to 
be able to output. These are often called the 
program requirements.

At this point, you have 2 things you should do: 
determine test cases and design the program 
itself. Following program design, you'll code up 
your program, and as you code, you'll use the 
tests you determined to continually check that 
your code is on track. When you've written all 
the code and passed all the tests, you'll have 
achieved success—a working program.

In many ways, being able to pass tests is 
the most critical ability of a program. This 
is why some people believe that coming up 
with tests should be the first thing you do 
when developing a program. This approach 
is called test-driven development. If you've 
developed a sufficient set of tests, then having 
a program that can pass the tests means that 
the program works correctly. The only way 
something would be considered an error, or 
bug, is if it caused a test not to pass.

Here are some good rules of thumb for what 
to test:

 » First, think of the boundary cases, also called 

edge cases or corner cases. In many programs, 
the edge cases are wherever there's a break or 

boundary of some sort. Suppose you had a test 

where you wanted to give a discount to people 

under 18 years of age. In that case, 18 would be 

an edge case—and so would 17. Those 2 ages 

would be right on the boundary and would be 

some of the most likely places that an incorrect 

computation might occur.

 » Next, try to think of special cases and invalid 

options that users might enter. If you're writing 

a program that handles peoples' names, you 

might assume that everyone has a first, middle, 
and last name, each made up of letters with 

an initial capital and the rest lowercase. But 

you probably want to ensure you can handle 

names with apostrophes or hyphens, different 

capitalization, and more or fewer than 3 names. 
Like with edge cases, the idea is to think about 

what assumptions you might have made for the 

typical case and ensure you handle the other 

cases that might come up, too.

 » Finally, test some of the regular cases. Usually, 
just a few of these are sufficient.

When you've thought of your tests, it's a good 
idea to write them down. Often, this is as 
simple as writing down an input and what the 
output should be.

Because of the impact that errors can 
have, testing is often a major part of 
a software development project. On 
professional projects, the estimates 
vary from about a quarter to about 
half the total time on a project being 
spent on testing!

Think early about your tests. 
Sometimes, thinking about tests will 
help you remember things you need 
to include in the software design 
itself. 

Exercise

Click here to see the solution.

Suppose you want to write a program 
that handles dates. What are some of 
the days of the year you might want 
to include in your test cases?

http://www.thegreatcourses.com


47Lecture 04 | Program Design and Writing Test Cases in C++

Once the tests have been considered, it's time 
to start thinking about how you can actually 
develop your program.

The usual way to approach this is with 
pseudocode. Instead of writing actual code 
right away, first you write out steps in more 
general terms that describe what you want 
the program to do but that aren't actual code. 
You can write those steps of pseudocode as 
a series of comments; then, you can translate 
that pseudocode to actual code.

Suppose you want to create a program that 
tells you where your blood pressure numbers 
fall in terms of healthy or not. What are the 
steps you'll want the program to follow?

Many programs follow a basic pattern: 
getting input, performing computations, and 
producing output.

In this case, for input, you want to have a user 
type in blood pressure. For computation, you'll 
use the blood pressure to classify someone's 
level of hypertension. And you'll just output to 
the person what his or her category is.

In terms of categorizing blood pressure, you'll 
use a set of conditions based on looking at the 
systolic and diastolic blood pressures. You're 
going to want to implement these concepts 
in code.

PSEUDOCODE

Blood Pressure Analyzer

1 Input: Blood pressure (Systolic, Diastolic) entered from keyboard

2 Compute: Determine what category that BP puts someone into

3 Output: Print the category the person is in to the screen

Elevated blood pressure:  
Diastolic < 80 and Systolic between 120 and 129

Stage 1 Hypertension:  
Diastolic between 80 and 89, or Systolic between 130 and 139

Stage 2 Hypertension:  
Diastolic 90 or greater, Systolic 140 or greater

Danger Zone:  
Stage 2 Hypertension, but Diastolic 120 or greater, or Systolic 180 or greater

Hypotension:  
Diastolic 60 or lower, Systolic 90 or lower

http://www.thegreatcourses.com


48Lecture 04 | Program Design and Writing Test Cases in C++

Because this program is 
relatively simple, your actual 
design process is not too 
complicated. You will have a 
sequence of steps: getting 
input, classifying the category, 
and producing output. Because 
all you're doing when classifying 
the category is outputting the 
result to the screen, you can do 
that at the same time as you 
classify the pressure.

You can write some short 
pseudocode to list the various 
steps you'll need to follow.

A good way to start when 
facing a programming task is to 
take the pseudocode steps that 
you know you will follow and 
transform them to comments.

Then, you can go back later 
and fill in the code between the 
comments. These comments 
serve 2 purposes: They will 
provide an outline that you can 
follow while developing code 
and serve as documentation for 
the code later so that it's clear 
which parts belong to which.

PSEUDOCODE

Blood Pressure Analyzer

1 Read in systolic and diastolic blood pressures

2 Compute and Output Category: 

a Check for Elevated blood pressure: 120<=S<=129 
and D<80

b Check for Stage 1 Hypertension: 130<=S<=139 or 
80<=D<=89

c Check for Stage 2 Hypertension: S>=140 or D>=90

d Check for Danger Zone: S>=180 or D>=120

e Check for Hypotension: S<=90 or D<=60

f Say OK if nothing else applies

First, you outline your program, putting in the standard information. 
Inside of main, you'll enter your comments showing what needs to 
be done—which came from the pseudocode steps.

You now have your program design and can start filling in parts of 
the program. As you do so, you'll want to frequently stop, compile 
your code, and make sure it's running as expected.

// Program 4_6 - Stage 1: Pseudocode converted to 
comments 

// Blood Pressure Analyzer 

#include <iostream>

using namespace std;

int main() { 

 // Read in systolic and diastolic blood pressures 

  // Check for Elevated blood pressure: 
120<=S<=129 and D<80

 

  // Check for Stage 1 Hypertension: 130<=S<=139 
or 80<=D<=89

 

  // Check for Stage 2 Hypertension: 180>S>=140 
or 120>D>=90 

  // Check for Danger Zone: S>=180 or D>=120

  // Check for Hypotension: S<=90 or D<=60

  // Say OK if nothing else applies

}

http://www.thegreatcourses.com


49Lecture 04 | Program Design and Writing Test Cases in C++

The first part to fill in is the input section—
where you want to read in the blood pressure 
by having the user type it in. You first need 
a few variables to hold the 2 blood pressure 
values. You'll name these systolic and 
diastolic, and because blood pressure 
numbers are always reported as integers, 
these will be an integer type.

Then, you'll ask the user to enter each of these 
and read them in. You'll have a cout statement 
that outputs instructions to the user. Notice 
that there's no end line here, so when users 
type information, they'll do so at the end of 
the line of text that was just output. You read 
in systolic first and diastolic second.

At this point, you've written a full chunk of 
code, so it's time to test it.

You'll create one line of output to make sure 
you know what you read in—just to ensure the 
data was read in correctly. Putting in output 
statements is one relatively easy way to do 
a quick check that variables have the right 
values.

In this case, you add one cout statement and 
try to compile the code to test it.

But you get an error when you compile! Your 
compiler might show the error information 
differently, but it should show something 
like 12:9, which says that in the function 
main, an error was discovered on line 12 and 
9 characters in. It then gives you a hint as 
to what the error is. In this case, it says that 
you're trying to use a variable you didn't 
declare.

It turns out that the problem was that 
diastolic was misspelled; it looked like you 
were trying to use some variable named 
diastlic, which didn't exist.

Fortunately, that's easy to fix, and if you run 
the fixed program a few times, you should get 
the right numbers output: You enter a number 
and see that same number output. So, you 
can remove the output line that you put in for 
testing and go on to the next section.

Then, you fill in the portion of code around the 
next comment. In this case, you are checking 
for elevated blood pressure. To do this, you 
have a conditional: You check to see that the 
systolic is at least 120 and no more than 129 
and that the diastolic is less than 80. If this 
is the case, you'll output that the person has 
elevated blood pressure.

After writing this, the next thing to do is test.

Because you want to handle edge cases, you 
should check diastolic pressures at 79 and 80 
as well as systolic pressures of 120 and 129, 
plus a few numbers on either side of those 
numbers. Plus, you should check some more 
typical values, such as 125 over 75, 125 over 85, 
and 110 over 70.

7 // Read in systolic and diastolic 
blood pressures 

8  int systolic, diastolic; 

9  cout << "Enter your systolic 
pressure (the larger, first 
number): "; 

10  cin >> systolic;

11  cout << "Enter your diastolic 
pressure (the smaller, second 
number): ";

12  cin >> diastlic;

  cout << "You entered values 
of " << systolic << " and " << 
diastolic << endl;

14  if ((systolic >= 120) && 
(systolic <= 129) && (diastolic 
< 80)) {

15   // Check for Elevated blood 
pressure: 120<=S<=129 and D<80

16   cout << "You have elevated 
blood pressure." << endl;

17  }

http://www.thegreatcourses.com


50Lecture 04 | Program Design and Writing Test Cases in C++

Next, you'll fill in another comment area—in 
this case, the check for and then response to 
stage 1 hypertension. The situation is very 
similar to the earlier case, but with a different 
condition. It makes sense to use the else-if 
construction to write this code.

So, in the case where the previous condition 
failed, you now check a new condition—in this 
case, to look for stage 1 hypertension. That 
occurs when either systolic is in the 130 to 139 
range or the diastolic is in the 80 to 89 range. 
Your condition will be more complex.

You've now written an else-if clause in 
which you use comparisons of systolic and 
diastolic levels to compare to the limits and 
a cout statement to print: You have stage 1 
hypertension.

It's once again time to test the code. You 
can test the edge cases for both systolic and 
diastolic, so you can check 130 over 80 and 
130 over 89, along with 139 over 70, and so on. 
You can also check a few in the middle.

If you enter 130 over 80, that is in the stage 
1 hypertension area, and your program 
correctly outputs that information.

Now try 130 over 89. You don't get an answer; 
there must be a bug somewhere!

If you look at the code, you can see that 
diastolic was accidentally written as <= 80 
instead of >= 80. To fix this, just change < to >.

Once you make that change, test again to 
make sure you fixed the bug. Keep testing. Try 
some more average cases, such as 135 over 
75. This should be hypertension, but again, 
you don't get a line of output!

Looking at the code, you can see another 
problem in your condition: The line with && 
means that both systolic and diastolic have to 
be in a certain range, when the actual result 
should be an or. Change && to || to fix that line.

This code now seems fixed, but you should 
run all of your tests to make sure.

If you keep going, you can fill in the rest 
of the program section by section. You 
add additional else-if sections with more 
conditionals to check for the various cases. 
In this case, you handle the check for stage 
2 hypertension, for being in the danger 
zone, and for hypotension. And in the 
best case, when you don't fall into any of 
the bad categories, you get to print out a 
message saying that blood pressure is in a 
healthy range.

As you do this, continue to test to make sure 
that everything is working as expected. 

18  else if (((systolic >= 130) && 
(systolic <= 139)) 

19     && ((diastolic <= 
80) && (diastolic <= 89))) {

20    // Check for Stage 
1 Hypertension: 130<=S<=139 or 
80<=D<=89

21    cout << "You have 
stage 1 hypertension." << endl;

22   }

18 else if (((systolic >= 130) && (systolic <= 139)) 

19    || ((diastolic >= 80) && (diastolic <= 89))) {

20   // Check for Stage 1 Hypertension: 130<=S<=139 or 80<=D<=89

21   cout << "You have stage 1 hypertension." << endl;

22  }

Mistakes are a normal part of programming—even for the best programmers in the world. As you develop programs, don't worry 
that you encounter bugs and errors. Keep testing frequently as you develop your code and you'll catch your bugs sooner, making 
it easier to locate and then fix them. 

http://www.thegreatcourses.com


51Lecture 04 | Program Design and Writing Test Cases in C++

Blank lines, or white space, can 
help separate parts of a program 
that are conceptually different.

Except for lines starting with 
#—which must remain on single 
lines by themselves—it's possible 
to break up any other line and 
almost anywhere within each line.

// Program 4_6 - Stage 9: Final Version
// Blood Pressure Analyzer
#include <iostream>
using namespace std;

int main() { 
 // Read in systolic and diastolic blood pressures 
 int systolic, diastolic;
 cout << "Enter your systolic pressure (the larger, first number): ";
 cin >> systolic;
 cout << "Enter your diastolic pressure (the smaller, second number): ";
 cin >> diastolic;

 if ((systolic >= 120) && (systolic <= 129) && (diastolic < 80)) {
  // Check for Elevated blood pressure: 120<=S<=129 and D<80
  cout << "You have elevated blood pressure." << endl;
 }
 else if (((systolic >= 130) && (systolic <= 139)) 
   || ((diastolic >= 80) && (diastolic <= 89))) {
  // Check for Stage 1 Hypertension: 130<=S<=139 or 80<=D<=89
  cout << "You have stage 1 hypertension." << endl;
 }
 else if (((systolic >= 140) && (systolic < 180))
   || ((diastolic >= 90) && (diastolic < 120))) {
  // Check for Stage 2 Hypertension: 180>S>=140 or 120>D>=90
  cout << "You have stage 2 hypertension!" << endl;
 }
 else if ((systolic >= 180) || (diastolic >= 120)) {
  // Check for Danger Zone: S>=180 or D>=120
  cout << "Your blood pressure is in the danger zone!" << endl;
 }
 else if ((systolic <= 90) || (diastolic <= 60)) {
  // Check for Hypotension: S<=90 or D<=60
  cout << "You have hypotension." << endl;
 }
 else {
  // Say OK if nothing else applies
  cout << "Your blood pressure is in a healthy range." << endl;
 }
}

http://www.thegreatcourses.com


READINGS
a Stroustrup, Programming Principles and 

Practice Using C++, sections 5.11 and 6.2.

b Ousterhout, A Philosophy of Software 
Design, chap. 15.

52Lecture 04 | Program Design and Writing Test Cases in C++

// QUIZ

1 When developing a larger program, which of the 2 options in each of the 

following pairings should come first in the process?

a Writing code or writing tests

b Writing pseudocode or writing comments

c Running tests or writing code

d Writing code or writing comments

2 If you are writing a program that calculates the phase of water given a 

temperature, what are some good temperature values at which to check 

your code?

3 To determine whether someone is eligible for a loan and how much can 

be loaned, a person's assets, debts, and credit history are examined. 

Write the pseudocode and then the outline/framework (with comments) 

for a program that would collect information from a person and tell that 

person how much of a loan he or she can receive and at what interest rate. 

Note that you do not have sufficient information to actually write most of 

the code.

Exercise Solution

Click here to go back to the exercise.

Edge cases would include the first and last days of the year: January 1 and 
December 31. You'd probably also want to check that you can correctly handle 
the first and last days of some other months, including 28-day, 30-day, and 31-
day months.

There is one special case: February 29. You'd want to make sure you handle leap 
years correctly.

Finally, you'd want to test a few random dates spread through the year. Overall, if 
your program worked for all those cases, it probably works everywhere.

Click here to see the answers.

http://www.thegreatcourses.com


53Lecture 04 | Program Design and Writing Test Cases in C++

// QUIZ ANSWERS

1 a Writing tests. You should, generally, write tests prior to writing code. 

The idea is to decide what your program needs to do by describing 

how it should perform on various tests before actually running 

the tests.

b Writing pseudocode. Pseudocode is part of the design process and 

can be used to create many of the comments in a program.

c Trick question! You should generally run tests while you write code: 

Write some code, then test, write more code, then test, etc. Obviously, 

some code must be written before a test can be run over that part of 

the code.

d Generally, comments can be written before the code is written. This 

is especially true if the comments are taken from the pseudocode 

and describe the purpose of various parts of the code. But it is OK to 

write additional comments while writing code or after writing a piece 

of code.

2 Generally, you want to be sure to check your code near special points 

where things change. For water, this would be near the phase transition 

points: 32° Fahrenheit and 212° Fahrenheit. So, a thorough set of tests 

would probably verify that the program works at the transition points, 32 

and 212; a little on either side of the transition points (31, 33, 211, and 213); 

and a few points in the middle ranges, such as 10, 100, and 1000.

3 There are several possibilities, but here is one:

Pseudocode:

1 Collect information on assets

2 Collect information on debts

3 Collect information on credit history

4 Calculate loan amount eligible for and interest rate

5 Report loan information to user

Code:

1 // Calculate loan eligibility
2 #include<iostream>
3 using namespace std;
4 int main() {
5  /* Collect Asset Information */
6  /* Collect Debt Information */
7  /* Collect Credit History Information */
8  /* Calculate loan amound and rate */
9  /* Report information to user */
10 }

Click here to go back to the quiz.

http://www.thegreatcourses.com


// WHILE LOOPS

This code is for computing a balance from a 
loan where there is interest accumulated and 
payments made.

You begin by initializing the situation to a $1000 
balance, where each payment period you incur 
interest of 5% and make a payment of $100 (a). 

Then, you check to see if you have a positive 
balance (11). If you do, you incur interest, 
adding the interest onto the balance (12). You 
make a payment, reducing the balance by that 
payment (13). You increase a count on how 
many payments have been made, which is 
just 1 (14). And you print out what the balance 
is after that payment is made (15).

That's fine for computing the balance after 1 
month. If you run this code, you'll see that the 
balance after 1 payment is $950—that's the 
$1000 starting balance plus $50 in interest 
and then less $100 in payment.

But that's only good for 1 payment. Obviously, 
you're going to need more than 1 payment to 
pay off the whole loan, so you can repeat that 
if statement over and over. You'd have to 
copy and paste that code for each payment 
you wanted to make. If you do this, you find 
that you need more than 15 payments—which 
is 15 if statements taking more than 100 lines 
of code—to pay off the whole loan.

a

54Lecture 05 | C++ Loops and Iteration

05
IN THIS LECTURE:

While Loops

Program 5_1
Program 5_5
Program 5_9

For Loops

Program 5_12
Program 5_13
Program 5_16
Program 5_17

Scope of Variables

Program 5_18
Program 5_19
Program 5_21

Quiz

Quiz Answers

Programmers use loops to get the computer to do one of the things that 
it's best at and that people tend to dislike—mere repetition. Loops make 
it possible to repeatedly execute the same code over and over. There are 
2 main types of loops: the basic while loop and the for loop, which is a 
compact way to make the while loop happen a set number of times.

C++ Loops and Iteration

1 // Program 5_1
2 // Single if statement for 

computing balance
3 #include <iostream>
4 using namespace std;
5 
6 int main() {
7  float balance = 1000.0;
8  float payment = 100.0;
9  float interest = 0.05; 
10  int numpayments = 0;
11  if (balance > 0.0) {
12   balance += balance * 

interest;
13   balance -= payment;
14   numpayments++;
15   cout << "Balance after " << 

numpayments << " payment(s) is: " 
<< balance << endl;

16  }
17 }

http://www.thegreatcourses.com


55Lecture 05 | C++ Loops and Iteration

An easy way to program exactly what you 
want is with a while loop. It's like an if 
statement that keeps getting repeated as long 
as the if condition is true—in other words, 
while the condition is true.

You need to make only one small change to 
the program to get the functionality you want: 
Just change the word if to the word while. 
And if you run the program now, you'll get the 
exact same output you would've had when 
repeating the if statement 15 times.

Click here to see the solution.

Exercise

How might you create a while loop 
to print the numbers from 1 to 10?

The part of the while loop inside 
the curly braces is called the body of 
the loop. Every time you go through 
the body of the loop, it is called an 
iteration of the loop.

When the program comes to the while 
statement, it first checks the condition, just 
like it did with the if statement. In this case, 
the condition is still that the balance is greater 
than 0. As long as that's true, then everything 
in the curly braces after while is executed—
even if something inside the braces makes the 
condition no longer true.

For example, even though the balance on the 
last payment, payment 15, becomes negative, 
you continue to execute the remaining lines. 
The balance becomes negative when you 
subtract the payment. But you still execute 
the remaining lines in the curly braces: 
numpayments++ and the cout statement to 
print the balance.

After everything in the braces has been 
executed, you reevaluate the condition. 
After all, at the end of the loop, things have 
changed. In this example, the balance will have 
changed, so maybe it's no longer a positive 
balance. If the condition is still true, then you 
do everything in the braces again. This can 
continue indefinitely.

There is a less common variation of the while loop called the do while loop, which starts with the keyword do and puts the 
while condition check at the end of the loop and ends with a semicolon. Overall, the only difference this makes is that the 
program is now forced to go through the very first iteration. This can be helpful if you know that you need to go through the loop 
at least once.

When the condition is no longer true, you skip 
the things in the braces and go on to the next 
line after the while statement. If there are no 
lines after the loop ends, the whole program 
ends at that point.

11  if (balance > 0.0) {

11  while (balance > 0.0) {

http://www.thegreatcourses.com


56Lecture 05 | C++ Loops and Iteration

A sentinel is a deliberately unusual value that 
you wouldn't normally encounter, so it's a 
value you can use to indicate when you're 
done processing "regular" data. A negative 
balance in a bank account could be a sentinel, 
assuming you're not allowed to have an 
overdrawn account. You can use sentinels to 
help you identify when it's time to break out of 
a loop. If a sentinel value is encountered, the 
loop will be skipped over.

If the condition never becomes false, then 
every time the condition is evaluated, it's true, 
so the loop just repeats forever. This is called 
an infinite loop.

For example, the loop in Program 5_5 just 
keeps printing out consecutive numbers, 
starting at 1; notice that the condition is that 
the count is greater than 0, which is always 
true. If you run this program, it'll keep on 
going forever, until you do something special 
to stop it.

Generally, the way you stop the program will 
vary depending on your system. Sometimes, 
your IDE will have a Stop button of some sort 
that will cause it to stop; other times, you can 
hit control+C, and that will cause the program 
to "break" and stop. In the worst case, you 
might have to actually stop your entire system 
by closing whatever window you are running 
the program in.

If you are prepared to stop the infinite loop, 
try programming one yourself. 

There's a good chance that you'll accidentally 
create an infinite loop at some point while 
you program. It's a common pitfall that's easy 
to make if you make a mistake writing a loop 
condition, so it's better to figure out early on 
how to break out of one when it happens.

One problem you want to be aware of is that 
when you're figuring out average age, you'll 
want to divide the sum of the ages by the 
number of people. If you divide them, you'll be 
performing integer division. Remember that 
this gives only the quotient between them, 
ignoring any remainder. To deal with this, you 
need to convert one or both of the numbers 
to a floating-point value.

You can do this by casting a value, which 
is a way of converting a value of one type 
into a value of another type. To do this, you 
have a few options: We can put the new 
type in parentheses in front of the value you 
want to cast, or you can state the new type 
and then put the value we want to convert 
from in parentheses afterward. Either way, 
you'll convert the value, if possible, to the 
other type.

For the 3 types you've seen so far (integers, 
floating-point values, and Boolean variables), 
it's possible to convert one type to either of 
the others, as Program 5_9 shows. Note that 
there are some types you can't convert, such 
as strings of text and self-defined types.

1 // Program 5_9

2 // Type conversions

3 #include<iostream>

4 using namespace std;

5 

6 int main() {

7  int a = 3;

8  float b = 2.6;

9  bool c = true;

10  cout << float(a) << " " << (float)a 
<< endl;

11  cout << bool(a) << " " << (bool)a 
<< endl;

12  cout << int(b) << " " << (int)b 
<< endl;

13  cout << bool(b) << " " << (bool)b 
<< endl;

14  cout << int(c) << " " << (int)c 
<< endl;

15  cout << float(c) << " " << (float)c 
<< endl;

16 }

1 // Program 5_5

2 // Infinite Loop

3 #include <iostream>

4 using namespace std;

5 

6 int main() {

7  int count = 1;

8  while (count > 0) {

9   cout << count << endl;

10   count++;

11  }

12 }

http://www.thegreatcourses.com


57Lecture 05 | C++ Loops and Iteration

//  FOR LOOPS

Loops are useful for many aspects of 
computer programs. Any time you have 
a large amount of data to process, you're 
probably going to use a loop to go through all 
the pieces of data. But there's one particular 
pattern of specifying the number of loops 
that's very common, so there's a more 
compact way of writing a specific number of 
loops, called a for loop.

Program 5_12 is a slight variation on the 
previous loan-balance-calculation code. 
However, instead of the loop being based on 
having a positive balance, it's based on the 
number of payments. 

This loop will go through a fixed number of 
payments. It has a variable, numpayments, 
that keeps track of how many payments have 
been made; uses the number of payments 
as its condition; and increments the number 
of payments in every iteration of the loop. 
Notice that the condition is that the number of 
payments is less than 5.

What payments are printed out? What's the 
first one, and what's the last one?

The first you'll print out in this case is after 0 
payments—in other words, the initial balance. 
That's because the numpayments variable 
begins at 0, and the first thing done after the 
while condition is checked is to print out the 
results.

At the end of that first iteration, the new 
balance is calculated, and the number of 
payments is incremented to 1. This is checked 
versus the condition, and because it's still less 
than 5, you go through another iteration.

This will continue through payment 4. Notice 
that after printing out the result of payment 4, 
you calculate a new balance and update your 
numpayments to 5. So, when you next check 
the condition of the while statement, it will be 
false; the numpayments is no longer less than 5. 
So, you see results from 0 to 4.

Balance after 0 payments is: 1000
Balance after 1 payments is: 950
Balance after 2 payments is: 897.5
Balance after 3 payments is: 842.375
Balance after 4 payments is: 784.494

Let's look at some of the ways this loop works. 
You have a variable you initialize before the 
loop begins. That's numpayments, which you 
set to 0 (10). You have a condition where 
you check something about that variable. 
In this case, that's numpayments being less 
than 5 (11). And you update the variable in 
every iteration. Here, you're incrementing 
numpayments (15).

This is a very common way to organize loops. 
You initialize a variable, your loop condition 
relies on that variable, and you update the 
variable with every iteration.

// Program 5_12

// While loop for computing 
balance for set number of 
payments

#include <iostream>

using namespace std;

int main() {

 float balance = 1000.0;

 float payment = 100.0;

 float interest = 0.05;

 int numpayments = 0;

 while (numpayments < 5) {

  cout << "Balance 
after " << numpayments << 
" payments is: " << balance 
<< endl;

  balance += balance * 
interest;

  balance -= payment;

  numpayments++;

 }

}

http://www.thegreatcourses.com


58Lecture 05 | C++ Loops and Iteration

This initialize-compare-increment pattern is 
so common that it has its own form of loop: 
the for loop. Program 5_12 and Program 
5_13 have exactly the same effect.

Notice that you have taken the 3 key parts 
from the while loop structure—initialization 
of the variable, the condition, and the 
variable update—and put them into one 
statement at the beginning of the for loop.

Notice also that you start your loop with 
the word for instead of while. The for 
loop basically packages up several parts 
that would otherwise be spread across a 
while loop.

The for loop always begins with the 
keyword for and then, like the while loop, 
has parentheses and curly braces, giving 
the body of the loop. The difference is 
what's in the parentheses. Instead of just 
a condition, like the while loop has, you 
actually have 3 different parts separated by 
semicolons:

 » The initialization, which would come before 

the loop in the while loop formulation, 
is where you set the initial value for the 

variable you are using in the loop.

 » The condition works just like the condition in 

the while statement.

 » The update occurs at the end of each 

iteration of the loop.

So, when you have a for statement, you 
first execute the initialization command, 
then check the condition on each iteration 
of the loop, and finally run the update 
command at the end of each iteration of 
the loop.

While loop

For loop

// Program 5_13

// For loop for computing balance for set number of payments

#include <iostream>

using namespace std;

int main() {

 float balance = 1000.0;

 float payment = 100.0;

 float interest = 0.05;

 int numpayments;

 for (numpayments = 0; numpayments < 5; numpayments++) {

  cout << "Balance after " << numpayments << " payments is: " << balance 
<< endl;

  balance += balance * interest;

  balance -= payment;

 }

}

http://www.thegreatcourses.com


59Lecture 05 | C++ Loops and Iteration

All that the for statement has to have is the condition; 
almost like the while loop, it's possible to omit the 
initialization and the update from inside the for statement.

For example, in this version of the code, you keep the 
initialization outside the for statement. You still need the 
semicolon to separate the different parts, but you can just 
leave out the first part.

And in this version, you also omit the update part, putting 
the update back into the loop explicitly. So, the for 
statement in this instance is working exactly like the while 
statement, except the condition is surrounded by semicolons 
on both sides.

Normally, the advantage of the for 
loop is that all the information needed 
to understand the way the loop will 
behave is contained inside the for 
statement—inside the parentheses. 
It makes it easier to understand how 
the loop works if the initialization, 
condition, and update are all in 
one place.

In this very simple loop, notice that 
the for statement has a variable i 
that starts at 1 and continues while 
i is less than 4, incrementing by 1 
each time. So, the loop will output In 
loop: 1, In loop: 2, and In loop: 3.

After that third iteration, the variable 
i has the value 4, so it's no longer 
less than 4, and thus the loop won't 
go through another iteration. After 
the loop, the value of i is still 4, so 
you finally output the line After 
loop: 4.

The point is that the variable you have 
controlling the loop—known as the 
loop control variable—still has a value 
afterward. Typically, that'll be the first 
value that caused the condition to fail.

Just like you were able to nest 
conditional statements, you can nest 
loops. This is useful when you want to 

But then, there's not much point in using a for statement like 
this; you might as well use a while statement.

10  int numpayments = 0;

11  for (; numpayments < 5; numpayments++) {

10  int numpayments = 0;

11  for (; numpayments < 5;) {

12   cout << "Balance after " << numpayments 
<< " payments is: " << balance << endl;

13   balance += balance * interest;

14   balance -= payment;

15   numpayments++;

16  }

// Program 5_16

// Illustrating value of variable after a loop

#include <iostream>

using namespace std;

int main() {

 int i;

 for (i = 1; i < 4; i++) {

  cout << "In loop: " << i << endl;

 }

 cout << "After loop: " << i << endl;

}

http://www.thegreatcourses.com


60Lecture 05 | C++ Loops and Iteration

do something like visit every entry in a table; 
you can loop over the rows, and then in each 
row, loop over the columns.

So, if you wanted to print out the times tables 
for the numbers 1, 2, and 3, you could use the 
code shown here, which has 2 loops nested 
with each other. The outermost loop has 
variable i iterating from 1 to 3, and the inner 
loop has variable j iterating from 1 to 3. For 
each, the code will print out the product of 
i and j.

So, in this case, when i has the value 1, then 
j will have the values 1 through 3. Then, i will 
have the value 2, and j will again have values 
1 through 3. Finally, i has the value 3, and j 
again gets the values 1 through 3. So, there 
are 9 lines of output in this program.

The use of i and j for loop control variables is very common. Even though these are not exactly descriptive names, if you are 
going to loop through a sequence of values, it's common to use i to represent those values, and if you have 2 nested loops, it's 
common to use j for the inner loop. Because people expect i and j to be loop iteration indexes, this is one time when single 
letters have themselves become descriptive variable names. 

// Program 5_17

// Nested for loops

#include <iostream>

using namespace std;

int main() {

 int i;

 int j;

 for (i = 1; i < 4; i++) {

  for (j = 1; j < 4; j++) {

   cout << i << " times " << j << " is " << i * j 
<< endl;

  }

 }

}

http://www.thegreatcourses.com


61Lecture 05 | C++ Loops and Iteration

Scope applies to more than just loops; it can even apply to 
conditionals. But loops are the first place you generally want to 
use scope.

Put simply, every time you declare a variable, you get a new "box" 
in memory for that variable. But this variable only persists within 
the block of code—the section of commands defined by the curly 
braces. Once you leave a block of code defined by the closing curly 
brace, that box of memory disappears.

In Program 5_18, the initialization part of the for loop does more 
than just initialize the integer—it also declares it. That means that the 
variable being declared—in this case, i—only exists in that loop itself. 
Its scope is just that one loop.

In this case, the loop runs just like you'd expect, and it outputs the 
values 1, 2, and 3.

However, if you try to print out the value of i after the loop, then 
you get an error! The variable i is no longer defined at that point; 
the box of memory has been destroyed!

In Program 5_19, you declare the variable j inside a loop. If you 
run this, you get the number of iterations you'd expect, and just like 
you'd expect, the value of i takes on the values 1, 2, and 3 in the 
loop body and is 4 after the loop is over. But why is the value of j 
always 1, even though there is a line, j++, that seems to change the 
value of j?

// SCOPE OF VARIABLES

// Program 5_18

// Declaring variable in a for loop header

#include <iostream>

using namespace std;

int main() {

 for (int i = 1; i < 4; i++) {

  cout << i << endl;

 }

}

// Program 5_19

// Declaring a variable in a loop

#include <iostream>

using namespace std;

int main() {

 int i;

 for (i = 1; i < 4; i++) { 

  int j = 1;

  cout << "In loop: " << i << " " << j 
<< endl;

  j++;

 }

 cout << "After loop: " << i << endl; 

}

http://www.thegreatcourses.com


62Lecture 05 | C++ Loops and Iteration

Every time the loop body is executed, j gets 
declared again. So, you create a new box, 
named j, and initialize its value to 1. Later in 
the loop body, you increment j, so it'll have 
the value 2, but then the loop body ends. At 
this point, the memory is destroyed; there's no 
more j available.

The next time you go through the loop, you 
again create the variable j and initialize it to 
1. So, every time it's printed out, the value will 
show up as 1.

To get a variable to stick around from one 
iteration to the next inside a loop, you can 
declare it as a static variable inside the loop. 
If you put the word static in front of the 
declaration, it says that you want to declare a 
variable and you want that declaration to stick 
around even when it goes out of scope. So, 
if you come back to this same variable in this 
part of the code later, you'll have access to it.

In this case, the variable j is created the first 
time you enter the loop body. Then, each time 
you go through the body in the future, that 
line is skipped, and you don't destroy the box 
named j at the end of the loop. So, every time 
you encounter the j++ line, it will increment j, 
and that new value will stick around into the 
next iteration.

However, that does not mean that j sticks 
around after the loop is over; it still goes back 

out of scope after that. If you try to access j 
after the loop, you still get an error.

A variable called j that you declare inside the 
curly braces can even have the same name 
as another variable declared outside the curly 
braces; that is, you create a new variable j 
with scope that lasts only during the loop, and 
once you leave the loop, the previous variable 
j is again used (Program 5_21). 

Declaring a variable inside a loop 
sets aside new memory for that 
variable, even if it has the same name 
as a variable outside the loop. When 
the loop ends, that new memory is 
destroyed, but the original variable 
remains.

9   int j = 1;

9   static int j = 1;

// Program 5_21

// New variable name inside loop

#include <iostream>

using namespace std;

int main() {

 int i;

 int j = 1;

 for (i = 1; i < 4; i++) {

  int j = 500;

  cout << "In loop: " << i << " " << j << endl;

  j++;

 }

 cout << "After loop: " << i << " " << j << endl;

}

http://www.thegreatcourses.com


63Lecture 05 | C++ Loops and Iteration

READINGS
a Stroustrup, Programming Principles and Practice Using C++, sections 4.4.2–4.4.3.

b Lippman, Lajoie, and Moo, C++ Primer, sections 5.4 and 5.5.

// QUIZ

1 For each of these cases, when would you usually 

use a for loop, and when would you use a 

while loop?

a To read in numbers until a specific number is 

entered

b To read in 10 numbers from a user

c To add up the numbers in a specified range

d To repeat a calculation until the value is 

negative

2 How would you rewrite the following code that 

uses a while loop to instead use a for loop?

1 #include<iostream>
2 using namespace std;
3 
4 int main() {
5  int i;
6  i = 10;
7  while (i > 1) {
8   cout << i << endl;
9   i--;
10  }
11 }

3 What would be the output of the following code?

1 #include<iostream>
2 using namespace std;
3 
4 int main() {
5  int i;
6  for(i=0;i<10;i+=2) {
7   int j = i;
8   while(j>1) {
9    j /= 2;
10    cout << i << " " << 

j << endl;
11   }
12  }
13 }

Click here to go back to the exercise.

Exercise Solution

Here's one way to do it.

1 // Program 5_4
2 // While loop for printing 1 to 10
3 #include <iostream>
4 using namespace std;
5 
6 int main() {
7  int num = 1;
8  while (num <= 10) {
9   cout << num << endl;
10   num++;
11  }
12 }

Click here to see the answers.

http://www.thegreatcourses.com


64Lecture 05 | C++ Loops and Iteration

// QUIZ ANSWERS

1 While it may be possible to use either loop, there is a clear better choice in 

each case:

a while. This will repeat an unknown number of times, until some 

condition is reached. That is typical of a while loop.

b for. You know a specific number of times you want the loop to run, so 

this is generally done using a for loop.

c for. You will want to loop over each of the values in the range, and 

because there is a specific range, a for loop is more appropriate.

d while. You will repeat some unknown number of times until some 

condition is met. This is more commonly handled by a while loop.

2 Here is the most straightforward way:

1 #include<iostream>
2 using namespace std;
3 
4 int main() {
5  int i;
6  for (i=10; i > 1; i--) {
7   cout << i << endl;
8  }
9 }

Remember that the initialization (i=10) is the first item in the parentheses 

of the for loop, the condition (i > 1) is the second term in the 

parentheses, and the update (i--) is the last term in the parentheses.

3 This program has 2 nested loops. The outer for loop lets variable i take 

on the values 0, 2, 4, 6, and 8 because it is initialized to 0, continues only as 

long as i is less than 10, and increases by 2 each time. In the inner while 

loop, j takes on values starting at i and then keeps dividing by 2. This 

continues until j is 1 or less. Notice that the output statement occurs after j 

is divided by 2, so generally, as long as j begins with a value greater than 1, 

the final output value will be 1. So, the overall output is:

2 1
4 2
4 1
6 3
6 1
8 4
8 2
8 1

 » When i has the value 0, then the inner loop is never run.

 » When i has the value 2, then j gets the value 2; the loop is run 
for 1 iteration, in which j becomes 1; and one line is output: 2 1.

 » When i has the value 4, then j gets the value 4, then 2, then 1. 
The values are output twice, first after j gets the value 2 and 
then again after it gets the value 1.

 » Likewise, when i has the value 6, then j will have the value 6, 
then 3, then 1 (remember that this is integer division). So, again, 
2 lines are output: one when j is 3 and one when j is 1.

 » Finally, when i has the value 8, j will take on values 8, then 4, 
then 2, then 1. Thus, there will be 3 lines output, for the values of 
j equal to 4, 2, and 1.

Click here to go back to the quiz.

http://www.thegreatcourses.com


65Lecture 06 | Importing C++ Functions and Libraries

Importing C++ 
Functions and Libraries06 IN THIS LECTURE:

Code Libraries

How Code and Libraries Are Compiled in C++

Program 6_3

The C++ Standard Library

Program 6_4

Random Numbers

Program 6_7

Program 6_8

Program 6_9

Program 6_10

Program 6_11

Program 6_13

Program 6_14_a

Program 6_14

Quiz

Quiz Answers

// CODE LIBRARIES

Code libraries give you access to additional 
functionality; they directly give you the ability 
to do things in your code that you wouldn't 
otherwise be able to do. If you want the ability 
to do something special, such as perform a 
mathematical computation, then you can use a 
library for mathematical operations. 

You've already been using an example of a 
library: You have been #including iostream 
ever since the Hello, World! program, and 
that's a way of giving the rest of your code 

access to a special library. The io part means 
input-output, and iostream lets you print 
output to the screen and read in input the user 
types on the keyboard.

If you did not have access to that library, 
you'd need to learn how the computer stores 
information that gets sent to the screen, how 
the individual keystrokes come in, and how 
you can use those really basic operations to 
do things like write text to the screen or read 
in a large number typed in. 

With enough time and effort, you could learn 
to do that, but someone already did all that 
on your behalf by creating the library, so you 
don't have to mess with those details yourself.

There are a few good reasons to use libraries.

 » Libraries let you separate ideas in your code, 
which lets you have a simple way of thinking 

about any one piece of code.

 » Libraries are reusable. When someone else has 

figured out how to do a particular task, there's 

no sense in doing the exact same thing yourself. 

While the most basic programs have just a few lines of code, some of the 
more complex systems written in C++ require many thousands of lines of 
code, even when the programmers use loops and functions to make the 
code as compact as possible. A major system like Windows takes tens 
of millions of lines of code! That much code is well beyond what any one 
programmer is capable of writing and understanding well. One of the 
main ways that people collaborate to produce code is through a library. 

http://www.thegreatcourses.com


66Lecture 06 | Importing C++ Functions and Libraries

The library can then be compiled into an 
object file, which is machine instructions. 
But these machine instructions can't be run 
on their own. Because no main function was 
defined in the library, it doesn't have any 
commands that just get executed on their 
own; instead, these are machine instructions 
waiting to be used by some other program.

Next is your program—the one that you want 
to actually make use of the library. This is 
where you'll define main. It needs to know what 
functionality is available and how to use it. So, 
to get access to that library's functionality, it 
will #include the library's header file. 

// HOW CODE AND LIBRARIES ARE COMPILED IN C++

A library typically consists of 2 parts: a 
header file and an implementation file. You 
can think of the header file as the interface 
for the library. The header file basically makes 
a few definitions and declarations and says, 
"Here is what will be in the library and how it 
can be accessed." But it doesn't necessarily 
contain the details of how the things in the 
library are actually implemented. 

When people write their own header files, the 
header file will typically have the extension .h. 
You might also see the extension .hpp, where 
the pp is added to show that the header is 
part of C++ (plus plus). For standard headers, 
you don't worry about any extension, because 
it's automatically implied. You just write 
iostream, not iostream.h.

The details of how the library is implemented 
are contained in the implementation file, which 
will contain regular C++ code and will have 
a .cpp extension. If the file is just standard 
C code, it might only have a .c extension. 
The implementation file has all of the details 
of how the things declared in the header 
file should be implemented, and will usually 
#include the header file at the beginning.

Note that a library does not actually contain 
a main function. The library is not going to 
contain code that is run as the main program 
by itself; it's just going to contain functions 
that can be used by the main program.

Your main program gets compiled into its own 
object file. But this new object file does not 
have the actual implementation of the stuff in 
the library. Those commands are in the other 
object file—the library's object file.

So, after all the compilation is done, there's 
one more step: the linker, which will combine 
the main program's object file with the 
library's object file to create an executable file. 
The executable file now has all the information 
from both the program file and from the 
library file, and it can thus be run on its own.

http://www.thegreatcourses.com


67Lecture 06 | Importing C++ Functions and Libraries

Because a program is not too useful until it is linked with the library, 
the linking phase is usually combined with the compiling phase. In 
fact, when people talk about compiling, they usually really mean 
"compile and link." 

The libraries are usually already compiled well in advance. The 
standard C++ libraries are installed automatically when you install the 
C++ compiler. If you ever create your own library, you'll compile that 
part ahead of time, too.

Also, realize that a program can, and often does, link with more than 
one library. The process is the same; there are just more header files 
to #include.

// THE C++ STANDARD LIBRARY

The first libraries to be aware of are a standard set of files that are 
included with every C++ installation. These libraries are collectively 
often called the C++ Standard Library, and there are around 50 
of them in all. These standard libraries are the ones to rely on first 
when you have something you want to do. Just write a #include 
statement near the top of your program, putting the library name 
inside the angle brackets.

Because C++ basically grew out of C, C++ libraries have been 
inherited from C. And C was, and still is, used for several applications, 
so many libraries were developed for C, including some standard C 
libraries, such as ones for math and time. C++ still provides access 
to all of these libraries, which are named "c ", where the " " is the 
name of the old C library.

The standard C++ libraries provide a lot of functionality 
for you to make use of. There are dozens of functions 
located in just the math library. 

The website cplusplus.com gives clear explanations for 
lots of functions, including all the standard C++ library 
headers. 

Try following the Reference link on the site to find more 
about a specific topic. Or just try a search engine; the first 
or second item in the search results may take you to the 
same location. 

// Program 6_3

// Using more than one library 

#include<iostream>

#include<string>

using namespace std;

int main() {

 string s;

 cin >> s;

 cout << "You entered " << s << endl;

}

http://www.thegreatcourses.com
http://cplusplus.com


68Lecture 06 | Importing C++ Functions and Libraries

In the case of this code, you're going to use the cmath library. To do 
this, you'll #include cmath. This will take the header file, cmath, and 
put all that header file information into your code. One of the things 
cmath will give you access to is a square root function, sqrt, which 
you can use in your program. 

In this case, you print out the square root of 2.0, which is 1.41421.

This is the first time you've really used a function in your code. 
When you use a function, there are 2 key parts: a function name and 
parentheses that come right after it. 

In the square root example, you have a function for computing the 
square root, and the name is sqrt. After the function name there will 
always be a pair of parentheses.

Inside those parentheses, there will often be arguments, which 
are values that you will be giving to the function. In the case of 
computing a square root, you need a single number to take the 
square root of. So, you need to have one argument: the number to 
take the square root of. 

When you write code and want a function to happen, you write the 
function name and parentheses, along with any arguments you need 
to give it. This is referred to as a function call, and it is said that you 
are calling or invoking the function. It means that when you get to 
that part of the code, you execute the code corresponding to that 
function. Remember, not every function needs arguments; some will 
perform operations without requiring arguments. But regardless, 
they'll still have parentheses.

If the function is designed to compute some value, that function 
call is replaced by the value it computes. It is said that the function 
has returned a value. For the square root function, you will have 
a floating-point value—the value of the square root—returned. 
Whenever you encounter a function call, if there is a return value, 
you can think of the function call as just being replaced by the value 
of the function. 

Notice that the square root function call occurs in the middle of an 
output statement. The value that is returned from the function is 
what is output.

The square root function, like all functions, is not defined in C++ all 
by itself. To access to it, you need to get it from the cmath library, 
which includes a variety of math functions, such as a power function 
(pow), trigonometric functions, and exponential and logarithmic 
functions. 

// Program 6_4

// Using cmath (and iostream)

#include <iostream>

#include <cmath>

using namespace std;

int main() {

 cout << sqrt(2.0) << endl;

}

http://www.thegreatcourses.com


69Lecture 06 | Importing C++ Functions and Libraries

Suppose you want to develop a guessing 
game in which the computer picks a number 
and the user has to try to guess the number 
picked. 

To do this, you're going to need a function 
that lets you get a random number. Random 
number generation is actually a tricky 
problem—it's nearly impossible to generate 
truly random numbers with a deterministic 
computer—but the key is to generate 
pseudorandom numbers, which seem like 
random numbers and are just as useful for 
most applications. 

You can turn to libraries, where people 
who understand pseudorandom number 
generation have implemented ways of getting 
these numbers for you. 

A web search for something like "C++ random" 
can be the quickest way to identify a relevant 
library function from the standard C++ library, 
if one exists.

In this case, C++ has 2 standard libraries that 
will generate random numbers. One of them 
is called random, but it's complicated to use. 
An easier-to-use library is the C Standard 
Library, cstdlib, which includes the widely 
used function rand, which does not take any 
arguments and returns an integer. The integer 
will be some number between 0 and the 
maximum-possible random integer. 

To generate a random number, you have a 
simple program that you begin by #including 
the cstdlib header. Then, you can use the 
function rand, with no arguments, in the code 
to give you an integer.

If you run Program 6_7, you see that a 
random number is generated.

You can generate more random numbers by 
calling the rand function multiple times. Every 
time you call rand, you get a new random 
integer. In Program 6_8, 3 random numbers 
are generated.

When you have #includes, the library 
file you're including is in brackets 
formed by < and >. An alternative to 
this is to use quotation marks. The 
code works exactly the same.

Generally, the convention is to use 
brackets for things that are in the 
C++ Standard Library and quotation 
marks for other libraries or files that 
you're using. 

// RANDOM NUMBERS

// Program 6_8

// Generating multiple random 
numbers

#include <iostream>

#include <cstdlib>

using namespace std;

int main() {

 int x = rand();

 cout << "The random number is 
" << x << endl;

 cout << "Here is another 
random number: " << rand() 
<< endl;

 cout << "... and another: " << 
rand() << endl;

}

// Program 6_7

// Random Number generation 
example

#include <iostream>

#include <cstdlib>

using namespace std;

int main() {

 int x = rand();

 cout << "The random number is 
" << x << endl;

}

http://www.thegreatcourses.com


70Lecture 06 | Importing C++ Functions and Libraries

With pseudorandom number generation, you 
have to initialize the numbers with a seed 
value, which can be any number, and the 
numbers produced seem very random—you 
can't tell they're related to the seed. However, 
if you start with the same seed, you will always 
get the same sequence of random numbers 
every time you call rand.

You can adjust this by setting the seed, which 
is done with a function called srand, which 
takes in one argument: the seed value to be 
used. After calling srand, every call to rand 
will be generated based on that seed value. If 
you give the same seed, you will get the same 
sequence of pseudorandom numbers.

Program 6_9 shows what the code will look 
like with a different seed value. In this case, 
the seed used is 3. If you run the code with 
different seeds, you'll get different sequences 
of numbers. 

Notice that the sequence you get for a seed 
of 3 is very different from that for a seed of 4, 
which would be very different from a seed of 
5, and so on.

If you want something that seems even more 
random, you can try to choose a seed without 
having to specify a number. A common way 
of doing this is to use the current time as the 
seed value. So, even though the numbers are 
not truly random, no one is going to be able to 
guess the actual digits ahead of time.

There's a library called ctime that will give you 
the current time.

In Program 6_10, the ctime library has been 
#included. That gives you access to a function, 
time, that will give you a current time. The 
time function takes one argument, which you 
should just set to 0. The function time will 
then give you a different value at every time, 
based on the current clock time.

If you run this code, you'll get a different 
sequence of numbers every time you run it. 
Because the actual time in the computer is 
changing every second, the time function is 
giving you a different value all the time, so 
every time you run the program, you have a 
different seed.

// Program 6_9

// Random Number generation 
example with seed (new seed value)

#include <iostream>

#include <cstdlib>

using namespace std;

int main() {

 srand(3); // Set the seed for 
the pseudorandom sequence

 int x = rand();

 cout << "The random number is 
" << x << endl;

 cout << "Here is another random 
number: " << rand() << endl;

 cout << "... and another: " << 
rand() << endl;

}

// Program 6_10

// Random Number generation example with time-based seed

#include <iostream>

#include <cstdlib>

#include <ctime>

using namespace std;

int main() {

 srand(time(0)); // Set the seed for the pseudorandom sequence

 int x = rand();

 cout << "The random number is " << x << endl;

 cout << "Here is another random number: " << rand() << endl;

 cout << "... and another: " << rand() << endl;

}

http://www.thegreatcourses.com


71Lecture 06 | Importing C++ Functions and Libraries

Now that you're able to generate random integers, let's say that you 
want to limit your integers to between 1 and 100. One way to do this 
is to use the modulus operator (%), which gives you the remainder 
after dividing. If you take a number modulus 100, then you get the 
remainder, which will be something between 0 and 99. If you had 
random numbers to begin with, then you'll have random remainders.

Then, if you want a random number to be from 1 to 100 instead of 
from 0 to 99, you just add 1 onto the modulus.

Program 6_13 is a modification of the previous code that will 
generate random numbers in the 1 to 100 range. If you run this 
several times, you'll see that you get random numbers, all in the 
range of 1 to 100.

// Program 6_11

// Random Number generation within range 0-99

#include <iostream>

#include <cstdlib>

#include <ctime>

using namespace std;

int main() {

 srand(time(0)); // Set the seed for the 
pseudorandom sequence

 int x = rand() % 100; // Modulus 100 means number 
between 0 and 99

 cout << "The random number is " << x << endl;

}

10  int x = rand() % 100 + 1; // Adding 1 to change 
[0-99] to [1-100]

// Program 6_13

// Multiple random numbers in range of 
1 to 100

#include <iostream>

#include <cstdlib>

#include <ctime>

using namespace std;

int main() {

 srand(time(0)); // Set the seed for the 
pseudorandom sequence

 int x = (rand() % 100) + 1;

 cout << "The random number is " << x 
<< endl;

 cout << "Here is another random number: " 
<< (rand() % 100) + 1 << endl;

 cout << "... and another: " << 
(rand() % 100) + 1 << endl;

}

http://www.thegreatcourses.com


72Lecture 06 | Importing C++ Functions and Libraries

To make your guessing game, you'll want to 
pick a random number and then repeatedly ask 
a user to pick a value, telling the user if he or 
she is too high or too low. You'll see how long it 
takes for the user to guess the right answer.

Remember to start by writing some 
pseudocode, giving an outline of what you 
want the program to do. 

Next, you use the pseudocode outline and 
convert it into comments in the code. You will 
make each of the steps a comment within main, 
testing the code after each step is coded. Then, 
you fill in the parts of the program one by one. 

PSEUDOCODE
1 Generate a random number

2 Get a user's initial guess

3 Repeat until the user guesses the 
right value

a Report if too high or too low

b Get another guess

4 User guessed it—report how 
many tries

People have created C++ libraries to do all sorts of things, from display 3-D graphics 
to perform advanced scientific computation. At least at first, it's often better to 
stick to more established C++ libraries, but if you're interested in finding additional 
libraries, one particularly good source is Boost.org. In fact, some of what started out 
as Boost libraries have now been incorporated into the standard C++ library! Here 
are some places to start: Boost Filesystem Library and Boost Math Library.

For someone just starting, the amount of information in these libraries may feel a bit overwhelming. So, if you want to look at 
library functions, start with a header for something that sounds simple and just focus on one or 2 functions, trying to understand 
them. To get started, you might look at the libraries string, complex, ctime, or stack. 

For more libraries, you can search for lists of "open source C++ libraries" available on the web. On the home page for 
cppreference.com, there is a link for Non-ANSI/ISO Libraries that's a list of unofficial libraries that are available for a variety of 
applications.

// Program 6_14_a

// Random Number Guessing Game

#include <iostream>

#include <cstdlib>

#include <ctime>

using namespace std; 

int main() {

 // Generate a random number 

 // Get a user's initial guess

 // Repeat until the user 
guesses the right value

 // Report if too high or 
too low

 // Get another guess

 // User guessed it - report 
how many tries.

}

http://www.thegreatcourses.com
http://Boost.org
https://www.boost.org/doc/libs/1_39_0/libs/filesystem/doc/index.htm
https://www.boost.org/doc/libs/?view=category_Math
http://cppreference.com


b

c

a

73Lecture 06 | Importing C++ Functions and Libraries

If you run this program, you'll be able to play a 
different game every time. 

Review this program twice. First, do it 
with everything visible and see if you're 
able to follow each of the statements and 
commands used:

 » cstdlib and ctime (a),

 » the srand function (10), 

 » the time function (10), 

 » the rand function (11),

 » the while loop (b), 

 » the if conditional (c), 

 » the input (16, 31), and

 » the output (15, 23, 26, 30). 

Then, run through the program again, but this 
time see if you can generate something similar 
to the code by yourself, starting from the 
pseudocode. 

READINGS
a Stroustrup, Programming Principles and 

Practice Using C++, section 8.3.

b See also www.cplusplus.com and 
en.cppreference.com for lists of standard 
libraries that can be imported. 

// Program 6_14
// Random Number Guessing Game
#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;

int main() {
 // Generate a random number
 srand(time(0)); // Set the seed for the pseudorandom sequence
 int num_to_guess = (rand() % 100) + 1;

 // Get a user's initial guess
 int user_guess;
 cout << "Guess a number from 1 to 100: ";
 cin >> user_guess;
 int num_guesses = 1;

 // Repeat until the user guesses the right value
 while (user_guess != num_to_guess) {
  // Report if too high or too low
  if (user_guess < num_to_guess) {
   cout << "Your guess was too low." << endl;
  }
  else {
   cout << "Your guess was too high." << endl;
  }

  // Get another guess
  cout << "Guess again: ";
  cin >> user_guess;
  num_guesses++;
 }

 // User guessed it - report how many tries.
 cout << "You guessed it! It took you " << num_guesses << " tries." 
<< endl;
}

http://www.thegreatcourses.com
http://www.cplusplus.com
http://en.cppreference.com


74Lecture 06 | Importing C++ Functions and Libraries

1 The cmath library includes a function floor that will round a number 

down to the next integer.

a What line of code lets you use the functions in the cmath library?

b What line of code would you use to assign to a variable a the result of 

rounding the variable x down to the next integer?

2 Write code that will simulate 10 rolls of a pair of dice. Print out the result of 

each roll (the sum of the numbers on the dice) on a separate line.

3 This task will require looking up information about a library online to 

demonstrate the process that you can generally follow to make use of 

other libraries.

Look up the library <iomanip> in an online resource (e.g., http://www.

cplusplus.com/reference/iomanip/ or https://en.cppreference.com/w/cpp/

header/iomanip).

On separate output lines, use the setprecision and setw functions to 

output the number 1234.56789 in a range of 10 characters but rounded to 

4 decimal places, in a range of 9 characters rounded to 3 decimal places, 

and in a range of 8 characters rounded to 2 decimal places. 

Note: You will need to output fixed to cout before any other output to 

ensure that you have a decimal representation and not scientific notation. 

Simply add the line cout << fixed; to your program. You might wish to 

experiment to see what happens if you do not include that line.

// QUIZ

Click here to see the answers.

http://www.thegreatcourses.com
http://www.cplusplus.com/reference/iomanip/
http://www.cplusplus.com/reference/iomanip/
https://en.cppreference.com/w/cpp/header/iomanip
https://en.cppreference.com/w/cpp/header/iomanip


75Lecture 06 | Importing C++ Functions and Libraries

// QUIZ ANSWERS

1 a #include<cmath>

b a = floor(x);

Note: In addition, cmath includes a ceil function that rounds up to the 

next integer and round that rounds to the nearest integer.

2 Here is one way of writing the program:

1 #include <iostream>
2 #include <cstdlib>
3 #include <ctime>
4 using namespace std;
5 
6 int main() {
7  srand(time(0)); // Set the pseudorandom seed
8  int d1, d2;
9  int i;
10  for(i=0;i<10;i++) {
11   d1 = rand() % 6 + 1; // Random number 

from 1 to 6
12   d2 = rand() % 6 + 1; // Random number 

from 1 to 6
13   cout << d1+d2 << endl; // Output the sum of 

the dice
14  }
15 }

Notice that you include the cstdlib library to give you access to the 

rand() function and ctime to give you access to the time function. Then, 

you set a seed using the time value so that you get different rolls each 

time you run the program. You have a for loop that iterates 10 times. 

In each, you generate one simulated roll by taking rand() (which 

generates a random integer), then taking it modulus 6 (which gives the 

remainder after dividing by 6—thus, a number from 0 to 5), and finally 

adding 1 (to make the number a random one in the range of 1 to 6). You 

do this for each die and output the sum.

3 a You will need to first go to the website and learn how the setw and 

setprecision commands are used. It is often most helpful to look at 

example code there.

b Notice that you will need to #include <iomanip>. Also notice that the 

commands are all in the std namespace (with std:: in front of them); 

you can leave this off because you are writing using namespace 
std; in your programs.

c You will need to put the setw and setprecision commands in the 

cout statements. There are multiple ways you can do this, but one 

example is shown below, in which the fixed statement is used.

1 #include <iostream>
2 #include <iomanip>
3 using namespace std;
4 
5 int main() {
6  float x = 1234.56789;
7  cout << fixed;
8  cout << setw(10) << setprecision(4) << x << endl;
9  cout << setw(9) << setprecision(3) << x << endl;
10  cout << setw(8) << setprecision(2) << x << endl;
11 }

Click here to go back to the quiz.

http://www.thegreatcourses.com


76Lecture 07 | Arrays for Quick and Easy Data Storage

07 IN THIS LECTURE:

Storing Variables in Memory

Program 7_1

Indexing into an Array

Program 7_3

Program 7_4

Initializing an Array

Program 7_5

Program 7_8

Program 7_9

Program 7_10

Array Bounds

Program 7_11

Quiz

Quiz Answers

Arrays for Quick and 
Easy Data Storage

// STORING VARIABLES IN MEMORY

Let's say that you want to store one variable. 
You declare a variable, and that creates a 
"box" with that variable name that's stored 
in memory. If you want to store a second 
variable, you declare a second variable, which 
gets a new box in memory. 

If you wanted to allocate many variables—say 
20 of them—it would be painful to declare 20 
different variables. Instead, it would be easier 
to say, "I want a set of 20 variables"—and 
that's what an array gives you. 

An array is a collection of some number of 
variables. All the variables will have the same 
type, and all will be referred to using the same 
name, with a separate way of identifying each 
individual variable.

To declare an array of variables, you still start 
with the type of variable you want. In Program 
7_1 on page 77, it's an integer.

You then have the name of the array, which is 
test_array. It wouldn't be practical to name 
all the variables with different names, so you 
refer to the entire group—the entire array—by 
one name.

After the array name, you have a pair of square 
brackets, which let you specify the size of the 
array, or the number of elements in the array. In 
this case, you're setting up an array of size 20. 

Society today generates massive amounts of data, including records of digital 
transactions, social media posts, and information from sensors and devices 
spread everywhere. In order to handle that large amount of data, we need a way 
to store it. And we need to be able to store not just a few variables, but dozens, 
or hundreds, or thousands. Fortunately, there's a solution—in fact, more than 
one solution—for handling as much data as you have. Two methods for storing 
data are arrays, which were part of C, and vectors, which were an improvement 
of C++.

In mathematics, vectors and matrices 
are described using square brackets. 
Because an array is similar to a vector 
or matrix in math, it makes sense 
that square brackets are used for 
them, too.

http://www.thegreatcourses.com


77Lecture 07 | Arrays for Quick and Easy Data Storage

In memory, these 20 "boxes" are all set aside in one big block—one 
block right after another.

After the array has been declared—that is, after that long stretch of 
boxes has been set aside in memory—you can refer to each individual 
box as a separate variable. To do this, you will again use square 
brackets, each containing a number, after the array name. The first 
such box will be 0, the second one will be 1, etc. You refer to a box 
by the array name and then, in square brackets, the box number.

In Program 7_1, you are assigning values of 10, 20, and 25 to the first 
3 boxes in the array. Notice that you can assign values to them, and 
you can refer to the values inside them, just like with other variables. 

Why do you start the numbering with 0 instead of 1? 
The short answer is it's a little more efficient than 
starting with 1.

Generally, the whole array is referred to as the variable. In other words, even though the array is made up of many different 
"boxes", which you could think of as many different individual variables, you will generally be able to refer to the entire array—the 
entire collection of boxes—as one thing, so it makes sense to call it a variable.

The individual boxes are called the elements, which are the component variables of the overall array variable. 

The number identifying an element is called the index.

To refer to an element of the array, the common phrase used is sub (which can be thought of as short for subscript) and then the 
index number.

// Program 7_1

// Declaring an array

#include <iostream>

using namespace std;

int main() {

 int test_array[20];

 test_array[0] = 10;

 test_array[1] = 20;

 test_array[2] = 25;

 cout << test_array[0] << " " << test_
array[1] << " " << test_array[2] << endl;

}

http://www.thegreatcourses.com


a

78Lecture 07 | Arrays for Quick and Easy Data Storage

// INDEXING INTO AN ARRAY

One of the things that makes using arrays 
feasible is that you can use a variable to 
represent the individual index. 

Suppose you create a small array named a 
with 5 elements, and suppose you assign 
values of 10, 20, 30, 40, and 50 to them. Then, 
you create an integer index variable i that you 
initialize to 3, and you print out a[i]. 

The output is the value that you assigned to 
a[3], which was 40.

When you access a single element of 
the array—by listing the array name and 
then putting the particular element index 
in square brackets—you are said to be 
indexing into the array. In other words, you're 
accessing array elements using the index of an 
element.

The ability to index into an array by 
using a variable that contains the index 
gives you the ability to easily address 
all the elements of the array by looping 
through it. 

For example, you can set all of the 
elements to initial values. Suppose you 
were playing a 4-person game and 
wanted people to have the same amount 
of money in the game to begin with—say 
$200 (Program 7_3). 

You would first create an array. You could 
write int player_money[4] (7), which 
would declare an array named player_
money with 4 elements.

Then, you would loop over all the indexes 
(9). In this case, you can use a for loop 
to iterate over the values from 0 to 3. You 
use i to keep track of the index.

Within that loop, you could then set 
player_money[i] to 200 (10), indicating 
that that player has $200. Because 
you loop over all 4 indexes, you have 
initialized all 4 elements.

Besides initializing, you can loop over the 
elements to print them (a).

int main() {

 int a[5];

 a[0]=10; a[1]=20; a[2]=30; a[3]=40; a[4]=50;

 int i = 3;

 cout << a[i] << endl;

}

// Program 7_3

// Setting all elements of 
an array

#include <iostream>

using namespace std;

int main() {

 int player_money[4];

 int i;

 for (i = 0; i < 4; i++) {

  player_money[i] = 200;

 }

 // Show output

 for (i = 0; i < 4; i++) {

  cout << player_money[i] 
<< endl;

 }

}

http://www.thegreatcourses.com


b

c

e

f

d

g

79Lecture 07 | Arrays for Quick and Easy Data Storage

Imagine that you want to read in a series of daily 
temperatures, report the average, and then list all 
the days that have a temperature greater than the 
average. 

To develop this program, you're going to need 3 
parts, so your pseudocode will just be 3 lines.

 » First, you'll need to read in all of the temperature 

data. Because you don't know how many 

temperatures you'll have, you won't know the size 

of the array ahead of time. You'll have to pick a size 

you think is plenty large. You'll also have to pick a 

sentinel value to let the program know when you're 

done entering data. In this case, that would be some 

temperature that no one would ever enter. When you 

read in temperatures, you can keep track of a count 

and a sum. 

 » Then, you use the count and the sum to compute an 

average. 

 » Once you've computed the average, you can go 

through the temperatures again and print out those 

that are larger than the average.

That pseudocode becomes comments, and then 
you fill in the details.

PSEUDOCODE
1 Read in temperature data, keeping the 

count and sum

2 Determine and print out average

3 Print out elements greater than 
the average

// Program 7_4

// Reporting temperatures greater than the average

#include <iostream>

using namespace std;

int main() {

 // Read in temperature data, keeping sum

 int temps[1000];

 int counttemps = 0;

 int currenttemp = 0;

 int total = 0;

 cout << "Enter a temperature: ";

 cin >> currenttemp;

 while (currenttemp < 200) {

  temps[counttemps] = currenttemp;

  total += currenttemp;

  counttemps++;

  cout << "Enter a temperature. Enter 200 or greater when done: ";

  cin >> currenttemp;

 }

 // Determine and print out average

 float average = (float)total / (float)counttemps;

 cout << "The average temperature was " << average << endl;

 // Print out elements greater than the average

 for (int i = 0; i < counttemps; i++) {

  if (temps[i] > average) {

   cout << temps[i] << " was above the average temperature." << endl;

  }

 }

}

http://www.thegreatcourses.com


80Lecture 07 | Arrays for Quick and Easy Data Storage

You begin by declaring an array of integers 
called temps that will hold the temperatures 
you read in from the user (8). You can 
make an array of size 1000, which assumes 
that the user won't enter more than 1000 
temperatures. 

You then set up some variables that you'll 
use in your program (b). The number of 
valid temperatures you've read in will be 
counttemps, and currenttemp will be used 
to hold the current temperature that you read 
in. And total will hold the combined sum of 
all temperatures. You'll use that to calculate 
the average later.

Next, you prompt the user to enter a 
temperature, which you read in to the variable 
currenttemp (c). Presumably, there will be at 
least one temperature, so you don't prompt 

the user for a sentinel value the first time. You 
then have a while loop (d) that will repeat 
until the user does enter a sentinel value, 
telling you it's time to stop. Because you're 
recording temperatures on Earth, you won't 
have temperatures like 200, so numbers 200 
or greater work well as a sentinel.

Each time through the loop, you'll update 
several variables (e). If you are in the 
loop, then you had a valid temperature, 
currenttemp, entered. So, you set the next 
element of the array, temps, to this current 
temperature. 

Notice that the array is indexed by the variable 
counttemps, which is initialized to 0, so the 
first temperature you have will go into the first 
array element, temps[0]. After storing the 
temperature there, you add the temperature to 
the running total and increment counttemps. 
So, counttemps will hold the number of valid 
temperatures read so far. The elements of 
temp that will contain valid temperatures are 
elements 0 through counttemps minus 1. 

Finally, still in the loop, you need to read in the 
next temperature, prompting the user (18). 
Notice that you instruct the user to enter a 
sentinel value when finished.

At this point, you have a loop that will read 
in all of your temperature values into an 
array, keeping track of the total number of 
temperatures and the sum.

The next segment of the program is just 
specifying what to calculate. You calculate 
the average by dividing the total sum of 
temperatures by the count of temperatures. 
Notice that you need to cast either the sum or 
the count to a float in order to get a floating-
point output (23). Finally, you output the 
average (24).

Your last section of code should go through 
your array and print out the temperatures that 
were greater than the average.

You begin by setting up a for loop (f) with 
initialization of the variable, the condition, 
and the variable update. Notice that you 
declare a new variable i that will iterate 
through the array values and is initialized to 0 
and incremented by 1 on each iteration. The 
comparison ensures that this continues as long 
as i is less than countttemps. So, your loop is 
for(int i=0; i<counttemps; i++).

Within the loop, you have a simple 
comparison: You check whether the element 
indexed by the current value of i is greater 
than the average and output if it was greater 
(g). Notice that because i will take on every 
valid index of the array, this will let you 
examine every element of the array.

If you run this program, you are able to 
enter several temperature values, and then 
you get an average printed, along with the 
temperatures that were greater than that 
average.

When choosing an array size, you 
want to pick one guaranteed to be 
big enough to hold all of your data. 
But you don't want to choose a size 
that is unnecessarily too large; the 
bigger the array, the more memory 
is taken up. If you have arrays with 
many millions of elements, you can 
actually exceed the memory in your 
computer!

http://www.thegreatcourses.com


81Lecture 07 | Arrays for Quick and Easy Data Storage

If you have an array of size 5 but only initialize it with 2 values—
suppose you don't know the size of the other teams—then the first 2 
elements of the array are initialized. 

When you print out the values of the 
first 5 elements, you see that the first 
2 elements have the values 5 and 6, as 
specified. The last 3 elements all have the 
value 0. 

Finally, you can declare an array without 
specifying the size if you initialize it 
with a set of values. In the code below, 
the array my_array is declared with 
an indeterminate size, where you don't 
specify anything in the square brackets. 
But you initialize it with a set of 5 values. 
So, this implicitly defines the array to be of 
size 5, and you see that the values are all 
set correctly.

On the other hand, if you just tried to declare an array with no 
size, you'd get a compiler error. Only when the array is initialized 
to something with a known size is it OK to leave the square 
brackets empty.

// INITIALIZING AN ARRAY

When you have array 
elements that aren't 
specified, they are 
often initialized to the 
value 0 by default. 
It's usually better 
to explicitly set any 
values that you want 
to be initialized so that 
you know what's in 
the memory locations 
that you might access.

You can also initialize arrays directly.

Program 7_5 has an array declaration that you might use if you 
were keeping track of numbers of people on various teams in a 
competition. The array team_members is declared to have size 5. 
To initialize it, you can specify the initial values that you want the 
elements to take as a series of 5 values separated by commas and 
enclosed in curly braces. In this case, you initialize the array to have 
values 5, 6, 4, 5, and 4.

When you run this program, the for loop iterates through all the 
members and the cout prints out values for each of the 5 elements 
in the order you specified them.

// Program 7_5

// Array Initialization

#include <iostream>

using namespace std;

int main() {

 int team_members[5] = { 5, 6, 4, 5, 4 };

 for (int i = 0; i < 5; i++) {

  cout << team_members[i] << endl;

 }

}

7  int team_members[5] = { 5, 6 };

7  int my_array[] = { 5, 6, 4, 5, 4 };

http://www.thegreatcourses.com


h

82Lecture 07 | Arrays for Quick and Easy Data Storage

Data is often more than just a single value, and 
you often want to keep track of multiple types 
of data at the same time, where the different 
data values are all tied together.

The method of doing this is called 
parallel arrays. You create multiple arrays, 
each one holding a different type of data. 
And you tie these together by making sure 
that the same index in each array refers to the 
same item. So, if you have an array to store 
low temperature, and another to store high 
temperature, then element 20 in both arrays 
refers to the same day. You can get the low 
and high for that day just by using that index.

In Program 7_8, you have 3 parallel arrays, 
which are used to store a date. The 3 arrays 
will store a year, a month, and a day. You set 
the arrays to size 100, meaning you can store 
up to 100 different dates. So, you can assign 
a date by assigning the day, month, and year 
to the elements of the 3 arrays, assuming they 
have the same index.

You can also have an array of arrays, or 
multidimensional arrays. You can declare a 
2-dimensional array by declaring a variable 
name with 2 sets of brackets, each with a 
value inside.

Suppose you wanted to keep track of 5 people, 
each of whom had 3 bank accounts: a checking 
account, a savings account, and a credit card 
account. So, you would want an array that 
is 5 elements long. Each of those elements 
would be an array of length 3. So, overall, you 
want a 2-dimensional array that is 5 by 3. You 
could declare this by the statement double 
accounts[5][3] as in Program 7_9. The name 
of the 2-dimensional array is accounts.

To access some particular person's account, 
you would access an element—by using the 
name of the account followed by 2 numbers, 
each in square brackets. For example, the 
fourth person's second account would be 
accounts[3][1], and in this code, you assign 
a balance of $1000 there (9). Remember that 
you start counting from 0, so the 3 indicates 
that it's the fourth person, and the 1 indicates 
that it's the second account. To set the value 
of the first person's third account to $50, 
you'd write accounts[0][2] = 50.0 (10).

Any time you want to access an element in 
this array, you should specify 2 values, each in 
brackets. The first element should be a value 
from 0 to 4; the second element should be a 
value from 0 to 2. 

You can use nested loops to loop over all 
individuals and then for each one, over all 
accounts, to see the results (h).

// Program 7_8

// Parallel Arrays

#include <iostream>

using namespace std;

int main() {

 int year[100];

 int month[100];

 int day[100];

 //January 1, 2000 in 
element 0

 year[0] = 2000; 
month[0] = 1; day[0] = 1;

 //February 12, 2007 in 
element 1

 year[1] = 2007; 
month[1] = 2; day[1] = 12;

}

// Program 7_9

// A 2D array uninitialized

#include <iostream>

using namespace std;

int main() {

 double accounts[5][3];

 accounts[3][1] = 1000.0;

 accounts[0][2] = 50.0; 

 int i, j;

 for (i = 0; i < 5; i++) {

  for (j = 0; j < 3; j++) {

   cout << "Person " 
<< i << ", account " << j << " 
has balance " << accounts[i][j] 
<< endl;

  }

 }

}

http://www.thegreatcourses.com


83Lecture 07 | Arrays for Quick and Easy Data Storage

If you do that, you see some values that you 
set as intended—the $50 and $1000 you just 
set, but there are many other random values. 
Remember, you never initialized those, so the 
information in them could be almost anything.

But you can add one more set of nested 
loops at the beginning of your code (i), just 
after declaring the array, to go through all 

individuals and all accounts for each individual 
and initialize them to 0. Now when you run the 
code, all the balances come out as expected.

Using 2-dimensional arrays can be useful if you 
have data that comes in on a 2- dimensional 
grid. But multidimensional arrays can also be 
useful when you have something that is easy 
to index in 2 different ways. 

// ARRAY BOUNDS

Regardless of whether you use 1-dimensional 
or multidimensional arrays, there is one issue 
to be particularly careful of: array bounds.

In Program 7_11, you have an array named 
my_array of size 3, and you set the values of 
the 3 elements in the array to 10, 20, and 30.

You have a loop that's designed to print 
out the values of the array, but instead of 
outputting 3 values, you make a mistake and 
have the loop try to print out 4 values instead. 
If you look at the for loop, the index i will 
take on values 0, 1, 2, and 3, because the 
condition is i<4. 

Because 0, 1, and 2 are part of the array and 
you just set values for each, they should be 
fine. But what happens when you try to print 
my_array[3]? 

i

// Program 7_11

// ERROR in output due to array 
out of bounds

#include <iostream>

using namespace std;

int main() {

 int my_array[3];

 my_array[0] = 10;

 my_array[1] = 20;

 my_array[2] = 30;

 for (int i = 0; i < 4; i++) {

  cout << my_array[i] << endl;

 }

}

// Program 7_10

// A 2D array initialized

#include <iostream>

using namespace std;

int main() {

 double accounts[5][3];

 int i, j; 

 for (i = 0; i < 5; i++) {

  for (j = 0; j < 3; j++) {

   accounts[i][j] = 0.0;

  }

 }

 accounts[3][1] = 1000.0;

 accounts[0][2] = 50.0;

 for (i = 0; i < 5; i++) {

  for (j = 0; j < 3; j++) {

   cout << "Person " << 
i << ", account " << j << " has 
balance " 

    << accounts[i][j] 
<< endl;

  }

 }

}

http://www.thegreatcourses.com


84Lecture 07 | Arrays for Quick and Easy Data Storage

When you run this, you might expect to 
encounter a compiler error or some other 
error at the beginning telling you that you're 
accessing an array element that's not there. 
Some compilers might be able to catch this 
and give a warning message, but this isn't 
what usually happens! 

If you're lucky, the program will just print out 
some value like 0 when the fourth element 
is printed. But what actually happens is not 
guaranteed. You could get almost any value 

printed out; in fact, you might find numerous 
lines output at once. The program might just 
crash completely!

This is called an array out-of-bounds error.

Unfortunately, there's no simple fix for this. 
Array out-of-bounds errors are one of the 
more common sources of bugs in C and C++ 
programming. Vectors are an alternative to 
arrays that have a way to help avoid this error. 
Vectors are the subject of the next lecture. 

// QUIZ

1 What would be the command to do each of the following?

a Declare an array named x of 5 integers.

b Assign the value 10 to the 3rd element of an array x.

c Print the first element of the array x.

d Create an array, x, initialized with 5 elements: 10, 20, 30, 40, and 50.

e Create a 2-dimensional array, x, of floating-point values with 4 rows 

and 6 columns.

2 Write a program that reads in 5 numbers then prints them out in 

reverse order.

3 Assume that you have a set of products and want to find which products 

have a rating that is better than the average rating. Write a program that 

reads in a product ID (an integer) and a rating (a floating-point number) 

for no more than 100 products, stopping when a product ID of 0 is read in 

and not counting this product. Then, print out the IDs of all products with 

an above-average rating.

READINGS
a Stroustrup, Programming Principles and 

Practice Using C++, section 18.6.

b Lippman, Lajoie, and Moo, C++ Primer, 
section 3.5.

Click here to see the answers.

http://www.thegreatcourses.com


85Lecture 07 | Arrays for Quick and Easy Data Storage

// QUIZ ANSWERS

1 a int x[5];
b x[2] = 10;

Remember that array indexes start with 0, not 1. So, the 3rd element 

is x[2];.

c cout << x[0] << endl;
d int x[] = {10, 20, 30, 40, 50};

Note that you could have written x[5] instead of x[] and had the 

same result.

e float x[4][6];

2 Although there are several ways this could be done, the most 

straightforward is to read the numbers into an array of 5 integers and then 

loop through the array in reverse order:

1 #include <iostream>
2 using namespace std;
3 int main()
4 {
5  int nums[5];
6  int i;
7  cout << "Enter 5 integers:" << endl;
8  for(i=0;i<5;i++) {
9   cin >> nums[i];
10  }
11  cout << "The numbers in reverse order are:" 

<< endl;
12  for(i=4;i>=0;i--) {
13   cout << nums[i] << endl;
14  }
15 }

3 This will use parallel arrays. You'll use one array for storing the product IDs 

and one for storing the rating. You will compute the average rating as you 

read in the data. Then, you will go through the list and print the ID for the 

products with a rating that is greater than the average:

1 #include <iostream>
2 using namespace std;
3 int main()
4 {
5  int ID[100];
6  float rating[100];
7  int totalnumber = 0;
8  float sumofratings = 0.0;
9  int i;
10  cout << "Enter a product ID and a rating, 

entering an ID of 0 to stop" << endl;
11  int id;
12  float r;
13  cin >> id >> r;
14  while(id > 0) { // Repeat until ID 0 is read in
15   ID[totalnumber] = id; // Store the product ID
16   rating[totalnumber] = r; // Store the 

product rating
17   totalnumber++; // Increase count by 1
18   sumofratings += r; // Sum up ratings
19   cin >> id >> r; // Read in next product
20  }
21  float averagerating = sumofratings/totalnumber;
22  cout << "The products with above average ratings 

are:" << endl;
23  for(i=0;i<totalnumber;i++) {
24   if (rating[i] > averagerating) {
25    cout << ID[i] << endl;
26   }
27  }
28 }

Click here to go back to the quiz.

http://www.thegreatcourses.com


86Lecture 08 | Vectors for Safe and Flexible Data Storage

Program 8_2 on the following page creates a 
vector with 3 elements, which have the values 
1, 2, and 3, and then prints those values out. 

This would have been easy to do with an 
array, too, but this program illustrates some 
similarities and differences between arrays and 
vectors.

Notice that to use a vector, you have to 
#include the vector library—which is part 
of C++'s Standard Template Library and 
is included in all C++ installations. This will 
give you access to what is called the vector 
class; it is going to let you make vectors, not 
just arrays.

// USING VECTORS

As you've learned, arrays are one way of handling large amounts of 
data. They can be efficient, but they have some issues. First, there is the 
possibility of arrays going out of bounds. Also, you need to know the 
size of the array at the time you declare it; this is a problem if you don't 
know how much space you need. As an alternative to arrays, C++ offers 
vectors, which address many of the annoying things about arrays. But 
vectors also offer a sampling of some of the other features that make 
C++ such a useful language, including object-oriented programming and 
templates.

08
IN THIS LECTURE:

Using Vectors

Program 8_2

Program 8_6

Program 8_7

Vector Size Initialization

Program 8_8

Program 8_9

Vector Resizing

Program 8_11

Program 8_12

Performing Out-of-Bounds Checks

Program 8_13

Program 8_15

Assigning Vectors

Program 8_16_a

Program 8_16

Quiz

Quiz Answers

Note that a C++ vector is not a 
mathematical vector.

In terms of how vectors are designed, 
they are, at their base, still arrays. 
So, the way you think of arrays 
in memory and how you access 
elements still applies, and much of the 
same terminology tends to be used 
for both vectors and arrays.

Vectors for Safe and 
Flexible Data Storage

http://www.thegreatcourses.com


a

87Lecture 08 | Vectors for Safe and Flexible Data Storage

A class can be thought of as a new type—
much like an integer or floating point. For now, 
you will use classes that are defined in the 
standard C++ libraries. In this case, that's the 
vector library, which defines the vector class.

To declare a vector, the line to use is vector; 
then the type, integer (int), inside of angle 
brackets (<>); and then a name (in this case, 
Victor) (8).

When talking about a vector, you 
usually say "vector of" some type, 
such as "vector of ints" or "vector of 
floats." And these can be thought of 
as the type of the variable.

Declaring things with brackets like this is 
the way to handle what's called generic 
programming in C++. It's an example of a 
template. The way to think of templates is that 
you can have a very general structure—in this 
case, a vector—that is a template that can take 
on multiple different types. When you want 
a specific version of the vector, you need to 
specify that it's a vector of some type, such as 
a vector of ints (integers).

Unlike with an array, you don't specify a size 
for vectors. One of the interesting features of 
vectors is that they can grow in size as you 
need them to. Initially, when you first declare 
a vector like this, it'll have no elements in it. In 
this example, you add elements to the vector 
and it will increase in size as you do so.

The next 3 lines (a) show one of the most 
common ways of adding data to a vector. You 
use a function called push_back to add a new 
element at the end of the vector (in other 
words, it gets pushed onto the back of the 
vector). And that element will have whatever 
value is the argument.

When you get to the first line, you'll add a 1 
onto the end of the vector. Because the vector 
started out with no elements, after that line, it 
will have 1 element, which will have the value 1. 
The second line will add an element with value 
2 onto the end of the vector. And the third 
push_back will add a third element to the 
vector—this one with a value of 3.

Notice that there's something different about 
these function calls. You have the name of the 
vector, which is Victor, and then a period, and 
then the function call. You do not just have 
the function call all by itself; the name of the 
vector comes before the function call.

This is an example of using a member 
function—in this case, push_back—which 
"belongs" to the particular variable. The period 
is used to say, "The second thing is part of 
the first thing." Here, the push_back function 
belongs to Victor; the function is part of the 
vector named Victor. And this push_back 
function is going to push the value at the back 
of the vector, and nowhere else.

The last line in the program is an output 
line. You'll stream several values to cout: 
Victor[0], Victor[1], and Victor[2], 
separated by spaces. Notice that you are 
addressing the elements of the vector using 
the same notation as you had for an array: an 
index you want in square brackets.

Exercise 1

Click here to see the solution.

How would you declare a vector of 
floats named temperatures? Also, 
what do you have to #include at the 
top of the program?

// Program 8_2

// Example of a vector

#include <iostream>

#include <vector>

using namespace std;

int main() {

 vector<int> Victor;

 Victor.push_back(1);

 Victor.push_back(2);

 Victor.push_back(3);

 cout << Victor[0] << " " << 
Victor[1] << " " << Victor[2] 
<< endl;

}

http://www.thegreatcourses.com


88Lecture 08 | Vectors for Safe and Flexible Data Storage

Because vectors can change in 
size as you add on additional 
elements, you would like to 
have a way to find out the size 
of the vector at any given time. 
Fortunately, there's a function to 
find the size of a vector.

Let's declare a vector of ints 
whose name is v. Like the 
push_back function for adding 
elements to the end of a vector, 
the function for finding the 
size of a vector is a member 
function of the vector class—
that is, it "belongs" to a vector. 
That means that to use it, you 
need to write the name of the 
vector, then a period, and then 
the name of the function. In 
this case, the function name is 
size, and it doesn't take any 
arguments.

You now have 2 output lines 
in which you output the initial 
size and the later size of the 
vector. In each case, to get the 
size of the vector v, you write 
v.size(). This will be the size of 
the vector.

Your first output command 
occurs right after declaring the 
vector. So, you get an output 
saying that the initial size is 0. 
The second output command 
comes after the 3 push_back 
commands. The size of the 
vector has increased with each 
of the push_back commands, 
and when you output the size, 
you indeed find that the later 
size is 3.

You can use vectors very much like arrays. You can assign 
values to individual elements, access the elements using 
variable indexes, and so on.

Exercise 2

Click here to see the solution.

Suppose you have a vector named ages and want to read in from a user a bunch of ages until the user enters a sentinel value, such 
as a negative number, to end the program. What would the code look like for this?

// Program 8_6

// Vector size

#include <iostream>

#include <vector>

using namespace std;

int main() {

 vector<int> v;

 cout << "Initial size is: " << v.size() << endl;

 v.push_back(1);

 v.push_back(2);

 v.push_back(3);

 cout << "Later size is: " << v.size() << endl;

}

http://www.thegreatcourses.com


89Lecture 08 | Vectors for Safe and Flexible Data Storage

You can use the size to loop through all the 
elements of a vector, in the same way you 
would loop through the elements of an array.

In Program 8_7, you declare a vector of floats 
(floating-point values) and then push_back 
3 different floating-point values (b). So, you 
should now have a vector of size 3.

To output the contents of the vector, you 
create a for loop (c). You use an index i that 
will be initialized to 0 and go as long as it is 
less than the size of the vector. So, in this case, 
because the vector is size 3, it should take on 
3 values—specifically, 0, 1, and 2.

For each value, you output the element of the 
vector, just like you would have done for an 
array. You write cout << v[i] << " " . This 
will output the element v[i], followed by a 
space. Notice that you do not output an endl, 
so all elements will appear on the same line. 
Only at the end do you stream out an endl to 
end the line of output (15).

The output shows 3 values: the 3 values you 
pushed back into the vector, in the same order 
you pushed them.

// VECTOR SIZE INITIALIZATION

Although the size of vectors can change, 
you can also specify a vector's initial size 
at the time of creation, like you were 
required to do for an array. To do this, you 
put the size you want the vector to have 
in parentheses right after the variable 
name in the declaration. Note that you use 
parentheses here, not square brackets, like 
you do for an array.

So, if you want a vector of floats named 
v of size 3, you can declare it by writing 
vector<int> v(3) (8). This will create a 
vector of ints with 3 elements, which will all 
be initialized to 0.

Right after the declaration, you have a set 
of output statements that will print the 
elements of the vector: There's an initial 
output line indicating that you're printing 
the initial vector (9); then a loop through 
all the elements of the vector (10), printing 
each element, separated by a space (11); 
and, finally, a cout statement ending the 
line of output (13). Notice that you are 
using the vector's size in the for loop by 
calling v.size().

When you run Program 8_8, you see that, 
indeed, the vector has 3 elements and they 
are all initialized to the value 0.

b

c

// Program 8_8

// Vector size initialization

#include <iostream>

#include <vector>

using namespace std;

int main() {

 vector<int> v(3);

 cout << "Initial vector : ";

 for (int i = 0; i < v.size(); i++) {

  cout << v[i] << " ";

 }

 cout << endl;

}

// Program 8_7

// Printing all vector 
contents using size

#include <iostream>

#include <vector>

using namespace std;

int main() {

 vector<float> v;

 v.push_back(10);

 v.push_back(20.0);

 v.push_back(0.05);

 for (int i = 0; i < 
v.size(); i++) {

  cout << v[i] << " ";

 }

 cout << endl;

}

http://www.thegreatcourses.com


90Lecture 08 | Vectors for Safe and Flexible Data Storage

Recall that you could initialize an array by specifying an initial set of 
element values enclosed in curly braces. You can do the same thing 
with vectors when you declare them. After the declaration, you write 
= and then the values you want in curly braces, and now the vector 
is initialized with those values.

In Program 8_9, you declare a vector of ints named v and then 
initialize it by adding = {1, 2, 3}. This will cause the vector to have 3 
elements, valued 1, 2, and 3. Notice that you do not have to set the 
size of the vector explicitly; it will get the correct size when it gets 
the initialization. When you print out the vector, you see that, indeed, 
it has 3 elements, with values 1, 2, and 3.

Vectors have another method that can be used to initialize them. 
Imagine that you wanted a large vector with 1000 elements and 
you wanted all of them to have some initial value, say 10. One option 
would be to write curly braces with 1000 10s inside it. That would be 
a huge pain to type!

For vectors, though, you have a way of initializing all of the elements 
to some particular value. To do this, when you declare the vector, 
you use parentheses after the variable name, then the number of 
elements, followed by a comma, and then the value that you want 
each of the elements to have:

vector<int> v(3, 10);

This example shows you creating a vector of size 3 with all elements 
initialized to 10. Outputting the vector verifies that this, indeed, 
works as expected.

The following line declares a vector of floats named accounts with 
starting size 4:

vector<float> accounts(4);

If you wanted that vector to be initialized with a balance of $100 
in each account, you would change the initialization by writing the 
following line:

vector<float> accounts(4, 100.0);

Now you have a 2-argument version with 2 values in the parentheses. 
The first is still the size, 4, and the second is the value to initialize 
everything to, 100.

This is called a constructor function—a function that's called to 
initialize a variable when it's first declared. Because it's a function, 
there are parentheses and possibly arguments. For now, just think of 
the constructors as providing a nice way to initialize your vectors.

// Program 8_9

// Vector initialization

#include <iostream>

#include <vector>

using namespace std;

int main() {

 vector<int> v = { 1, 2, 3 };

 cout << "Initial vector : ";

 for (int i = 0; i < v.size(); i++) {

  cout << v[i] << " ";

 }

 cout << endl;

}

http://www.thegreatcourses.com


91Lecture 08 | Vectors for Safe and Flexible Data Storage

// VECTOR RESIZING

One of the nice features of vectors is that they 
can change in size. You've seen one way of 
doing that—by using the push_back member 
function. When you use that function, you add 
an element onto the back of the vector, thus 
increasing its size by 1.

Another way you can resize a vector is with 
a member function named resize. To use 
resize, you use the vector name, followed by 
a period, followed by a call to resize. You can 
give resize one argument, which is the new 
size that you want the vector to be.

When you call resize, if the new size is 
larger than the old one, then new elements 
are created and they are initialized with the 
value 0. If the new size is smaller than the old 
one, then the last elements of the vector are 
removed.

Program 8_11 is an example of resizing a 
vector. After declaring a vector with the name 
v, you call resize on that vector, with an 
argument of 5. This will cause the vector to 
have a size of 5 instead of 0. And when you 
print out the vector elements after resizing, 
you see 5 elements, each with the value 0.

There's even another version of the resize 
function, one that takes 2 arguments 
(Program 8_12). Just like the initializing 
constructor can take 1 argument, specifying 
just size, or 2 arguments, with the first 
specifying size and the second specifying an 
initial value for the elements, you have the 
same thing here.

This example has 2 parts:

 » First, you create a vector with an initial size of 3. 
Because you did not specify any initial values, 
that vector of size 3 will have 3 elements, each 

of which has the value 0.

 » Next, you have a command, v.resize(5,1), that 

will resize the vector to be size 5. And the new 

elements of the vector will be initialized with the 

value 1. Because the original vector was of size 

3, resizing the vector will add 2 more elements 

onto it. Those 2 new elements—and just those 

2—will be initialized with the new value 1. So, 
when you print out the vector's elements, you 

see 5 elements, the first 3 having the value 0 

and the last 2 having the value 1.

// Program 8_11

// Vector resizing

#include <iostream>

#include <vector>

using namespace std;

int main() {

 vector<int> v;

 v.resize(5);

 cout << "Resized vector : ";

 for (int i = 0; i < 
v.size(); i++) {

  cout << v[i] << " ";

 }

 cout << endl;

}

// Program 8_12

// Vector resizing and 
initializing

#include <iostream>

#include <vector>

using namespace std;

int main() {

 vector<int> v(3);

 v.resize(5, 1);

 cout << "Resized vector : ";

 for (int i = 0; i < 
v.size(); i++) {

  cout << v[i] << " ";

 }

 cout << endl;

}

http://www.thegreatcourses.com


92Lecture 08 | Vectors for Safe and Flexible Data Storage

// PERFORMING OUT-OF-BOUNDS CHECKS

In terms of addressing individual elements 
inside the overall data structure, vectors can 
be used just like arrays. You've seen several 
examples already where square brackets are 
used to access individual elements. In all of the 
loops that print out array elements in the last 
several examples, you had elements accessed 
with square brackets.

Accessing elements of a vector by using 
square brackets works just like with arrays—
for good and bad. On the good side, it's very 
efficient, and you can access the next element 
directly. Because all the data is allocated in 
one continuous block of memory, it's easy for 
the computer to process it efficiently.

But there is a problem you have to be careful 
to avoid when accessing array elements: the 
array out-of-bounds error, which occurs when 
you try to access elements that have not been 
allocated to the array or vector.

In Program 8_13, you have a vector that's 
been initialized with 3 elements, having the 
values 1, 2, and 3. However, in the loop that 
you use to print out the array elements, you 
are printing out 5 elements! That means 
you're accessing v[3] and v[4], which don't 
really exist.

Just like with arrays, the code lets you do this; 
there's nothing stopping you from doing it. 
But when you run the code, who knows what 
results you'll get. In general, these nonexistent 
elements will have whatever value was last 
left in that memory location, and you have no 
guarantee what that is!

But with vectors, there is a way to avoid this 
error from ever occurring: Instead of accessing 
elements using square brackets, you can use 
the member function at.

To use this member function, you use the 
vector name, followed by a period, then the 
function call at, and then the number of the 
element you want to access in parentheses. 
This is basically the same code from before, 
but now you are using .at and parentheses, 
rather than square brackets, to access the 
element.

When you use at instead of square brackets, 
it will automatically check the bounds of the 
array. If you try to access an element that 
should not exist, you get an exception, which 
is an error code. And when you have an 
exception in a situation like this, the program 
will just stop. It won't access memory that it 
shouldn't, won't let you set values in memory 
that it shouldn't, and won't let you print out 
memory values that contain nonsense.

When you run this code, you get an output 
of just 3 elements. You have your for loop, in 
which you try to print out each element, from 
0 to 4, from a vector of size 3. Printing out 
elements 0, 1, and 2 is fine. However, when 
you try to print out v[3], that will be out of 
bounds. Because you're using the at function 
instead of square brackets, the program will 
stop at this point. It will exit with an exception.

// Program 8_13

// Vector ERROR indexing out 
of bounds

#include <iostream>

#include <vector>

using namespace std;

int main() {

 vector<int> v = { 1, 2, 3 };

 for (int i = 0; i < 5; i++) {

  cout << v[i] << " ";

 }

 cout << endl;

}

7 int main() {

8  vector<int> v = { 1, 2, 3 };

8  for (int i = 0; i < 5; i++) {

10   cout << v.at(i) << " ";

11  }

12  cout << endl;

13  cout << "Made it here!" 
<< endl;

http://www.thegreatcourses.com


93Lecture 08 | Vectors for Safe and Flexible Data Storage

It might seem weird that a 
program exiting is a better 
result than printing random 
data. But when you're accessing 
random data, who knows what 
will happen; instead, by using 
the at function, you guarantee 
a clean exit from the program. 
And there are ways of handling 
exceptions in the program so 
that it won't crash.

You can also use the at 
command to assign values to 
vector elements, just like you 
could with square brackets.

In Program 8_15, you first 
create a vector v with 5 
elements, with values 1 through 
5. Using square brackets, you 
set the second element, v[1], 
to 100 (9). Then, you set the 
fourth element, v[3], to 500, 
using the at command (10). 
This gives you access to the 
particular element of the 
vector, letting you assign the 
value there.

When you output the result of 
this, you see that the second 
and fourth elements of the 
vector have indeed been 
modified. The at function 
worked just like the square 

brackets. And if you had tried 
to set a value for an element 
that wasn't part of the vector, 
the at command would have 
thrown an exception, just like 
you saw when you were just 
printing.

Although at is certainly a safer 
way to access elements of a 
vector, it does have a downside: 
Every time you try to access an 
element with at, the computer 
is going to check the bounds 
of the array to see if you're 
trying to access something 
you shouldn't, which means 
that every access to an array 
element is going to be a little 
slower.

For most programmers, this 
is not a big deal; the program 
runs plenty fast, and the 
microseconds taken to check 
a value are insignificant. 
But for applications where 
performance is critical—where 
there are going to be millions 
of attempts to access array or 
vector elements—checking the 
bounds each time could be a 
significant factor. So, the usage 
of square brackets versus at is 
not consistent.

If you're interested in learning more about vectors, check out 
http://www.cplusplus.com/reference/vector/vector/.

// Program 8_15

// Assigning elements with brackets and "at"

#include <iostream>

#include <vector>

using namespace std;

int main() {

 vector<int> v = { 1, 2, 3, 4, 5 };

 v[1] = 100;

 v.at(3) = 500;

 for (int i = 0; i < v.size(); i++) {

  cout << v.at(i) << " ";

 }

 cout << endl;

 cout << "Made it here!" << endl;

}

http://www.thegreatcourses.com
http://www.cplusplus.com/reference/vector/vector/


94Lecture 08 | Vectors for Safe and Flexible Data Storage

// ASSIGNING VECTORS

Another feature that vectors 
offer that's not part of arrays is 
the ability to copy them.

In Program 8_16_a, you 
create 2 integer arrays of size 
3 named a and b. In this case, 
a is initialized with values 1, 
2, and 3.

You might like to be able to 
make b have the same values 
as a—to essentially copy a 
into b. However, if you try to 
write a line b = a, you'll get 
a compilation error. You are 
not allowed to assign arrays 
like that.

Instead, if you use vectors, this 
works out fine (Program 8_16). 
You create 2 vectors of ints a 
and b, and you initialize a to 
have 3 elements, with values 
1, 2, and 3. Then, you have a 
command, b = a, which copies 
a to b. Now b has 3 elements 
itself, and the values of the 
elements are the same as those 
of a. When you print out the 
elements of the vector b, you 
see that they have the same 
values as a.

Going forward, you'll be 
relying on vectors as your data 
structure of choice for storing 
large amounts of data. 

READINGS
a Stroustrup, Programming Principles and Practice Using C++, 

sections 4.6, 17.2, 17.3, and 18.5.

b Lippman, Lajoie, and Moo, C++ Primer, section 3.3.

// Program 8_16_a

// ERROR - Attempting to assign arrays is not allowed

#include <iostream>

using namespace std;

int main() {

 int a[3] = { 1, 2, 3 };

 int b[3];

 b = a;

}

// Program 8_16

// Assigning vectors

#include <iostream>

#include <vector>

using namespace std;

int main() {

 vector<int> a = { 1, 2, 3 };

 vector<int> b;

 b = a;

 for (int i = 0; i < b.size(); i++) {

  cout << b[i] << " ";

 }

 cout << endl;

}

http://www.thegreatcourses.com


95Lecture 08 | Vectors for Safe and Flexible Data Storage

// QUIZ

1 What would be the command to do each of the 

following?

a Create a vector named v of integers.

b Assign the value 10 to the 3rd element of a 

vector v (think of 2 ways to do this).

c Initialize a vector v of floating-point 

values to have 10 elements, each with the 

value 1.0.

d Add an element with value 10 to the end of 

a vector v.

e Assign the number of elements of a vector v 

to a variable s.

For the next 2 questions, compare these to 

the solutions you obtained in the equivalent 

exercises for the previous lecture.

2 Write a program to read in positive integers and 

then output them in reverse order. You should 

allow any number of integers to be read in.

3 Assume that you have a set of products and 

want to find which products have a rating that is 

better than the average rating. Write a program 

that reads in a product ID (an integer) and a 

rating (a floating-point number) for any number 

of products, stopping when a product ID of 0 

is read in and not counting this product. Then, 

print out the IDs of all products with an above-

average rating.

Exercise 2 Solution

Click here to go back to the exercise.

1 // Program 8_5
2 // Reading in values and adding on to a vector indefinitely
3 #include <iostream>
4 #include <vector>
5 using namespace std;
6 int main() {
7  vector <int> ages;
8  int age;
9  cout << "Enter someone's age. Enter a negative age to stop: ";
10  cin >> age;
11  while (age >= 0) {
12   ages.push_back(age);
13   cout << "Enter another age. Enter a negative age to stop: ";
14   cin >> age;
15  }
16 }

Exercise 1 Solution

Click here to go back to the exercise.

#include<vector>

…

vector<float> temperatures;

Click here to see the answers.

http://www.thegreatcourses.com


96Lecture 08 | Vectors for Safe and Flexible Data Storage

// QUIZ ANSWERS

1 a vector<int> v;

b There are 2 ways to do this:

v[2] = 10;
v.at(2) = 10;

c vector<float> v(10, 1.0);

d v.push_back(10);

e s = v.size();

2 You will use a vector to store the integers you read in. Because you want positive integers, you can use a 

negative integer as a sentinel value, telling you when to stop reading in. By using a vector instead of an array, 

you can add as many elements as you wish, and you do this using the push_back command rather than 

reading directly into an array element. To output, you will go through the vector in reverse order, starting 

from element number n-1, where n is the size of the vector; the output loop is identical to how you would 

output an array in reverse order.

1 #include <iostream>
2 #include <vector>
3 using namespace std;
4 int main()
5 {
6  vector<int> values;
7  cout << "Enter positive integers, entering a negative value to stop: " 

<< endl;
8  int v;
9  cin >> v;
10  while (v > 0) {
11   values.push_back(v);
12   cin >> v;
13  }
14  cout << "The numbers in reverse order are:" << endl;
15  int n = values.size();
16  int i;
17  for(i=n-1;i>=0;i--) {
18   cout << values[i] << endl;
19  }
20 }

http://www.thegreatcourses.com


97Lecture 08 | Vectors for Safe and Flexible Data Storage

3 You will use parallel vectors to store the product ID and the rating, similar to how you would handle an array. However, because you have vectors, you can add as many 

elements as you wish to the vector using push_back; you do not need to declare an array of a particular size and read directly into array elements. You will compute 

the average rating by summing as you construct the vector and then dividing by the total number (which you can get by using the size command rather than having to 

store a value as you read in data). Finally, you loop through the vector and output as you compare to the average; this final step is identical to how you would handle the 

problem with an array.

1 #include <iostream>
2 #include <vector>
3 using namespace std;
4 int main()
5 {
6  vector<int> ID;
7  vector<float> rating;
8  float sumofratings = 0.0;
9  int i;
10  cout << "Enter a product ID and a rating, entering an ID of 0 to stop" << endl;
11  int id;
12  float r;
13  cin >> id >> r;
14  while(id > 0) { // Repeat until ID 0 is read in
15   ID.push_back(id); // Store the product ID
16   rating.push_back(r); // Store the product rating
17   sumofratings += r; // Sum up ratings
18   cin >> id >> r; // Read in next product
19  }
20  int totalnumber = ID.size();
21  float averagerating = sumofratings/totalnumber;
22  cout << "The products with above average ratings are:" << endl;
23  for(i=0;i<totalnumber;i++) {
24   if (rating[i] > averagerating) {
25    cout << ID[i] << endl;
26   }
27  }
28 }

Click here to go back to the quiz.

http://www.thegreatcourses.com


98Lecture 09 | C++ Strings for Manipulating Text

Although computers were originally developed to deal mainly with 
numbers, it quickly became obvious that representing text, including 
letters and punctuation, was just as important. You've been using text 
for output in many of your cout statements, and you've seen ways 
of putting text in double quotes and then streaming that text to the 
console. The term for text like this—a collection of letters, numbers, 
punctuation, spaces, etc., all strung together—is a string.

09 IN THIS LECTURE:

String Variables and Literals

Program 9_1

Program 9_2

Program 9_3

Program 9_5

String Operations

Program 9_6

Program 9_8

Program 9_8_a

Char-Type Variables

Program 9_9

ASCII Table

Quiz

Quiz Answers

C++ Strings 
for Manipulating Text

// STRING VARIABLES AND LITERALS

Think of a literal as being in contrast to a variable. A 
variable can potentially be any value of a certain type; a 
literal is some specific value.

If you have a variable x and a line of code like x = 5, x is 
a variable while 5 is a literal. If you stream 3.14 to cout, 
you're streaming a literal floating-point value. Or, if you 
assign 3.14 to a floating-point variable f, then when you 
print f, you're streaming a variable.

Up to now, you've been using only string literals—specific fixed 
values of some type. Just like you can have variables to let you store 
and manipulate numbers or Boolean values, you also would like to 
have variables to let you store and manipulate strings. To do this, you 
use a new type of variable—the string type. String variables are the 
main way you process and manipulate text data. 

Unlike int, float, and bool, a string is not a built-in language 
type. To have access to a string type, you're going to bring in a new 
library, the string library. Once you've done that, you can declare 
string variables, just like you declare other variable types.

http://www.thegreatcourses.com


99Lecture 09 | C++ Strings for Manipulating Text

The string library is one of the standard C++ 
libraries, so to have access to it, you simply 
#include string. And everything in string falls 
in the standard namespace, so writing using 
namespace std at the beginning means you 
don't have to list the namespace explicitly.

Program 9_1 is a different variation on the 
Hello, World! program. Because you've 
#included string, you can declare variables 
to be of type string. In this example, you have 
declared a variable of type string named 
greeting. You then assign greeting a value, 
which in this case is the string Hello, World!. 

Finally, you output greeting, streaming the 
value of the string variable to cout, just like 
you would have streamed out a string literal.

When you run the program, you see Hello, 
World! printed out, just like you did in the 
original version.

You can stream input into a string, just like 
you streamed a string to output; that is, you 
can use cin to get input from the console and 
stream that input into a string variable.

Program 9_2 is a simple greeting program. 
You #include the string library, and you 
declare a variable of type string named 
username.

After prompting for the user's name by 
printing What's your name?, you then read 
the user's response into the string variable, 
username. The syntax is just like streaming 
other variable inputs: cin >> username;. 
You can then stream the string as part of an 
output statement so that you can say Howdy 
back to the user, using the user's own name.

If you run this code and type in John, you get 
the message Howdy, John!—just what you'd 
hope for.

On the other hand, if you type in a full name, 
John Keyser, you still get the same response: 
Howdy, John!. You don't get Howdy, John 

Keyser!. But you know that strings can 
contain spaces, so why didn't you get the full 
name stored in the string variable here?

When you stream input into a string, the 
stream will just take the next individual item 
entered and put that item's data into the 
variable. Individual items are considered to be 
the text elements separated by white space—
that is, spaces, tabs, and line breaks. So, when 
you typed in John Keyser, the streaming 
operation saw that as 2 different strings: 
one with the value John and one with the 
value Keyser. Only the first string, John, got 
streamed in to the variable.

// Program 9_1

// Declaring and printing 
a string

#include <iostream>

#include <string>

using namespace std;

int main()

{

 string greeting;

 greeting = "Hello, World!";

 cout << greeting << endl;

}

// Program 9_2

// A greeting program

#include <iostream>

#include <string>

using namespace std;

int main()

{

 string username;

 cout << "What's your 
name? ";

 cin >> username;

 cout << "Howdy, " << 
username << "!" << endl;

}

http://www.thegreatcourses.com


100Lecture 09 | C++ Strings for Manipulating Text

This variation on the program is designed to 
handle both first and last names. You have 
2 string variables declared: firstname and 
lastname. You also adjust your prompt to ask 
for both first and last names.

Then, you stream in to both variables, 
firstname and lastname. This means that 
the first string entered will go into the first 
variable, firstname, and the next string 
entered will go into the second variable, 
lastname.

The output statement is also changed. Notice 
that in the streaming output, you have to 
explicitly output a space between the first 
name and last name; otherwise, they would 
run together.

When you run the program now, if you enter 
the name John Keyser, you get the complete 
greeting, Howdy, John Keyser!, back from the 
computer.

Exercise 1

Click here to see the solution.

Suppose you want to write a program that asks a user for his or her name and favorite color and reads that information in. Then, 
a reply is printed, telling the person that the computer likes that color, too, using both the person's name and favorite color in the 
output. How might you program this?

// Program 9_3

// A greeting program handling first and last names

#include <iostream>

#include <string>

using namespace std;

int main()

{

 string firstname, lastname;

 cout << "What's your name? (Enter first name and last name) ";

 cin >> firstname >> lastname;

 cout << "Howdy, " << firstname << " " << lastname << "!" << endl;

}

http://www.thegreatcourses.com


101Lecture 09 | C++ Strings for Manipulating Text

You can stream in data with cin, but what if you want to 
read in a longer piece of text, such as a sentence with spaces 
and punctuation? There is a function called getline that is 
defined within the string library that lets you do this.

To use getline, you make a function call: You use the 
function name followed by parentheses, which will contain 
the arguments to the function. For getline, we want to use 
2 arguments: the source of the input (the console input cin) 
and the identifier of the variable that you want to hold the 
result of the function call (a variable of type string).

Let's modify the Hello, World! program using getline.

In this code, all the commands are identical to the ones from 
before, except the input command. Rather than streaming 
from cin to username, you're instead using the getline 
function. You write the command getline(cin, username);, 
which will read an entire line of input into the string 
username.

If you run this program and enter John Keyser as the name, 
the output will include the entire name, writing Howdy, John 
Keyser!.

Remember that you can look up what is in the 
string library through online references like 
cplusplus.com.

Exercise 2

Click here to see the solution.

a)  How would you declare a string named favoritefood?

b)  How would you then assign a value pizza to that variable?

c)  How would you stream in the string from input?

d) How would you instead read an entire line into the string?

e) How would you stream that string to output?

// Program 9_5

// Using getline

#include <iostream>

#include <string>

using namespace std;

int main() {

 string username;

 cout << "What is your name? ";

 getline(cin, username);

 cout << "Howdy, " << username << "!" << endl;

}

http://www.thegreatcourses.com
http://cplusplus.com


102Lecture 09 | C++ Strings for Manipulating Text

// STRING OPERATIONS

In Program 9_6, you have 3 strings—named 
s1, s2, and s3—and you assign the string 
Happy to s1 and the string Birthday to s2.

Then, you have a line: s3 = s1+s2;. In other 
words, you're adding together 2 strings to get 
a third string.

If you run this program, outputting s3 gives 
you a string HappyBirthday, with no space 
between the words. Basically, the string s3 
was formed by taking the first string, Happy, 
and sticking the next string, Birthday, onto 
the end. This is called concatenation. You 
have concatenated the strings s1 and s2 to 
form s3.

This means that the addition operation, +, 
works differently for 2 strings than it does 
for 2 numbers. The + operator is overloaded, 
which means that it has more than one 
meaning, depending on the types of the input.

Operator overloading is a common practice 
for defining behavior between different types.

In another variation on the previous program, 
instead of the strings Happy and Birthday, 
you assign s1 the string 3 and s2 the string 4.

When you 
add these 2 
together, the 
output is 34. 
Why is that?

Keep in mind that s1 and s2 are strings. The 
3 that is assigned to s1 is not the number 3; it 
is a string that happens to have just a single-
character digit, 3, inside of it. Likewise, s2 is 
assigned the string 4. When you add together 
strings, you get concatenation, so the result 
of adding s1 and s2 is to concatenate their 
strings. So, the result is not really the number 
34; it's the string 34.

In Program 9_8, you have a string, s, that you 
initialize to the value Happy. You then have a 
line: s += "Birthday";.

When you run this, you'll get a concatenated 
string, HappyBirthday, with no space in 
between. The string Birthday has been 
appended onto the original string, which was 
Happy. Basically, you took the value already in 
the string and performed a + operation with 
the right side, putting the result back in the 
original variable. But + for strings is defined 
as concatenation, so the 2 strings were 
concatenated together and the result was 
placed back in s.

A + does not always mean addition. 
The meaning of various operators 
changes depending on the type of 
thing they are operating on.

// Program 9_6

// Adding strings

#include <iostream>

#include <string>

using namespace std;

int main()

{

 string s1, s2, s3;

 s1 = "Happy";

 s2 = "Birthday";

 s3 = s1 + s2;

 cout << s3 << endl;

}

10  s1 = "3";

11  s2 = "4";

12  s3 = s1 + s2;

// Program 9_8

// Appending a string

#include <iostream>

#include <string>

using namespace std;

int main()

{

 string s = "Happy";

 s += "Birthday";

 cout << s << endl;

}

http://www.thegreatcourses.com


103Lecture 09 | C++ Strings for Manipulating Text

So, when a variable is a string, the += 
operation is the same as append, because you 
just append the new string onto the end of the 
existing one.

There are some unexpected effects of adding 
strings that you can run into. In Program 
9_8a, you have a string, s, and you try to 
assign s the sum of 2 string literals, Happy 
and Birthday. But unexpectedly, you get 

a compiler error, basically telling you that 
you're not allowed to add the 2 string literals 
together.

For general purposes, you're not allowed 
to add together string literals. You can add 
together string variables, and you can even 
add a string variable and a string literal. But 
you cannot add 2 string literals.

// CHAR-TYPE VARIABLES
In C, a string is basically an array. In 
C++, although there is still an array at 
its base, the way you use a string has 
many more vector-like options.A string is basically made up of an array, or a 

vector, of characters. A character is a letter, 
or digit, or punctuation, or space, etc. And a 
character has its own built-in type.

You don't need to #include any libraries to 
have access to it. The type is char.

Program 9_9 is a very basic program using a 
char-type variable. Notice that you don't need 
to #include any special libraries to use the 
char; you just have iostream so that you can 
output to the console.

You can declare a variable named testchar 
of type char by writing char testchar;. 
You can then assign a value to testchar—in 
this case, a. When testchar is streamed to 
output, a is printed to the screen.

In C and C++, characters are enclosed 
in single quotes ('), and there can be 
just one character inside. Strings use 
double quotation marks (").

Note: The single and double quotes 
should be the basic, standard 
quotation mark. If you use a word 
processor to write your code, it will 
often "help" by changing these to 
curly quotes—which are not the same 
thing and will cause errors in your 
program.

// Program 9_8_a

// ERROR - can't add string literals

#include <iostream>

#include <string>

using namespace std;

int main()

{

 string s;

 s = "Happy" + "Birthday";

 cout << s << endl;

}

// Program 9_9

// char type

#include <iostream>

using namespace std;

int main() {

 char testchar;

 testchar = 'a';

 cout << testchar << endl;

}

http://www.thegreatcourses.com


104Lecture 09 | C++ Strings for Manipulating Text

DEC CHAR
0 NUL (null)
1 SOH (start of heading)
2 STX (start of text)
3 ETX (end of text)
4 EOT (end of transmission)
5 ENQ (enquiry)
6 ACK (acknowledge)
7 BEL (bell)
8 BS (backspace)
9 TAB (horizontal tab)
10 LF (NL line feed, new line)
11 VT (vertical tab)
12 FF (NP form feed, new page)
13 CR (carriage return)
14 SO (shift out)
15 SI (shift in)
16 DLE (data link escape)
17 DC1 (device control 1)
18 DC2 (device control 2)
19 DC3 (device control 3)
20 DC4 (device control 4)
21 NAK (negative acknowledge)
22 SYN (synchronous idle)
23 ETB (end of trans. block)
24 CAN (cancel)
25 EM (end of medium)
26 SUB (substitute)
27 ESC (escape)
28 FS (file separator)
29 GS (group separator)
30 RS (record separator)
31 US (unit separator)

DEC CHAR
32 SPACE
33 !
34 "
35 #
36 $
37 %
38 &
39 '
40 (
41 )
42 *
43 +
44 ,
45 -
46 .
47 /
48 0
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
58 :
59 ;
60 <
61 =
62 >
63 ?

ASCII Table

The backslash (\) is called an escape 
character, and it means that the next 
character will indicate what special 
action to take.

MOST COMMONLY NEEDED  
SPECIAL CHARACTERS

\n new line
\t tab
\0 null
\" quotation mark (")
\' apostrophe (')
\\ backslash (\)
\? question mark (?)
\a audible bell
\b backspace
\f new page (form feed)
\r carriage return
\v vertical tab

\x... hexadecimal value
\.... octal value
\u.... Unicode character (4 digit)
\U... Unicode character (8 digit)

A char variable can take on any of the 
standard characters that you would type. 
These are called the ASCII characters, and 
each character you can get on a keyboard—
letters, numbers, punctuation, spaces, etc.—is 
assigned a number. 

The first 32 characters are control characters, 
followed by 92 printable characters, starting 
with punctuation marks and then numbers, 
then letters, first uppercase and then 
lowercase. In fact, if you assign a number to a 
char variable, we are meaning that it will have 
the corresponding ASCII value.

DEC CHAR
64 @
65 A
66 B
67 C
68 D
69 E
70 F
71 G
72 H
73 I
74 J
75 K
76 L
77 M
78 N
79 O
80 P
81 Q
82 R
83 S
84 T
85 U
86 V
87 W
88 X
89 Y
90 Z
91 [
92 \
93 ]
94 ^
95 _

DEC CHAR
96 '
97 a
98 b
99 c
100 d
101 e
102 f
103 g
104 h
105 i
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127 DEL

http://www.thegreatcourses.com


105Lecture 09 | C++ Strings for Manipulating Text

In C++, a string is basically a vector made up of chars. That's 
different from the way strings were handled in C, which basically 
used an array of chars with an extra null character—the ASCII 0—at 
the end to mark the end of the string.

Even in C++, a string literal is still treated like a C-style string. And 
because you can't add arrays, that's why you can't add string literals.

In both C and C++ strings, a particular character in a string can be 
accessed by using square brackets. And because C++ strings operate 
like vectors, they have all the benefits that vectors had over arrays.

For example, recall that the at member function allows you to 
access a particular character and check that you don't go out of 
bounds in the array.

You also have the ability to get the size of a string, just like you can 
get the size of a vector. For strings, it's easier to think in terms of 
length of a string rather than size, so a length command is also 
provided.

Strings can be compared to each other as well. You can check 
whether 2 strings are equal. This means every character has to 
be checked to see if it matches. And the same goes for checking 
whether 2 strings are not equal.

Comparing less than or greater than is a little trickier. This really 
involves considering whether the ASCII characters come before 
or after. To compare whether one string comes before another 
string according to the ASCII table, the comparison will go through, 
character by character, to find the first character that doesn't match. 
If the ASCII value of the first nonmatching character is greater in one 
string, then that string is the "greater" string.

Strings have other member functions that are useful.

 » The function empty returns a Boolean value that is true if, and only if, the 

string is empty—that is, it does not contain any characters.

 » The find function takes another string as an argument. It returns the 

position where that other string first occurs in the given string.

 » The substring function, substr, takes in 2 arguments: the first being the 

starting position and the second being the length. It returns a new string 

that is a piece of the old one. It will be the piece that starts at the starting 

position and is of whatever length is specified.

 » The replace function lets you replace part of a string with another 

string. 

Comparing strings is the basis for sorting in alphabetical 
order. Because upper-case letters come before lower-
case in ASCII, "Zebra" will come before "apple" when 
comparing strings.

A full list of member functions available for strings can be found at http://www.cplusplus.com/reference/string/string/.

http://www.thegreatcourses.com
http://www.cplusplus.com/reference/string/string/


106Lecture 09 | C++ Strings for Manipulating Text

Exercise 1 Solution

Click here to go back to the exercise.

Here's one way you might have written that program.

1 // Program 9_4
2 // Reading and using multiple strings
3 #include <iostream>
4 #include <string>
5 using namespace std;
6 
7 int main()
8 {
9  string username, favoritecolor;
10  cout << "What's your name? ";
11  cin >> username;
12  cout << "What's your favorite color? ";
13  cin >> favoritecolor;
14  cout << username << ", I like the color " << favoritecolor << ", too!" << endl;
15 }

Exercise 2 Solution

Click here to go back to the exercise.

a)  #include <string>
using namespace std;
string favoritefood;

b) favoritefood = "pizza";

c)  cin >> favoritefood;

d) getline(cin, favoritefood);

e) cout << favoritefood;

READINGS
a Stroustrup, Programming Principles and Practice Using C++, 

sections 23.1–23.2.

b Lippman, Lajoie, and Moo, C++ Primer, section 3.2.

http://www.thegreatcourses.com


107Lecture 09 | C++ Strings for Manipulating Text

// QUIZ

1 What is the output of the following program?

1 #include <iostream>
2 #include <string>
3 using namespace std;
4 
5 int main() {
6  string favoritefood = "Pizza";
7  cout << favoritefood << " is my favorite food." 

<< endl;
8 }

2 What is the output of the following program?

1 #include <iostream>
2 #include <string>
3 using namespace std;
4 
5 int main() {
6  string a = "One";
7  string b = "Two";
8  string c = "Three";
9  cout << a << b << c << endl;
10  cout << a+b+c << endl;
11 }

3 Assume that the string variable a has the value abcdefghijklmno. What 

would be the result of each of the following commands?

a a.length()

b a.size()

c a[2]

d a.find("hi")

e a.substr(4,3)

f a.replace(a.begin()+3, a.begin()+8, "ABCDE")

4 Write a program that reads in names and outputs the one that comes first 

alphabetically. You can assume that all names use the same capitalization 

pattern.

Click here to see the answers.

http://www.thegreatcourses.com


108Lecture 09 | C++ Strings for Manipulating Text

1 Pizza is my favorite food.

2 OneTwoThree
OneTwoThree

Notice that outputting the 3 strings outputs them with no spaces in 

between. This appears the same as forming a new string by concatenating 

the 3 strings together (recall that One + Two + Three is OneTwoThree).

3 
a 15. There are 15 characters in the string.

b 15. The length and size commands operate the same way.

c The result is the character c. Remember that numbering 

starts at 0.

d 7. Notice that the string hi occurs at positions 7 and 8 and thus 

starts at position 7.

e efg. This is taking the substring starting at position 4, which is 

the letter e, and taking 3 elements.

f abcABCDEijklmno. This replaces a part of the string, starting 

with position 3 (the d character) until just before position 8 (i.e., 

through the h character). The string ABCDE is inserted in place of 

the removed characters.

4 There are multiple ways to write such a program. You must first pick a way 

to stop the input, so you will use a sentinel string named stop to indicate 

this. Notice that when printing the quotation marks around this word, you 

must use a \ character beforehand. Because you can compare strings and 

the "smaller" string comes first alphabetically, the program will just read in 

strings and keep track of the smallest one seen, which is output at the end:

1 #include <iostream>
2 #include <string>
3 using namespace std;
4 
5 int main() {
6  string name;
7  string firstname;
8  cout << "Enter names, one per line, and 

enter \"stop\" when finished." << endl;
9  cin >> name;
10  firstname = name;
11  while (name != "stop") {
12   if (name < firstname) {
13    firstname = name;
14   }
15   cin >> name;
16  }
17  cout << "The first name alphabetically is 

" << firstname << endl;
18 }

// QUIZ ANSWERS

Click here to go back to the quiz.

http://www.thegreatcourses.com


109Lecture 10 | Files and Stream Operators in C++

// FILE STREAMING

Whenever a program is reading or writing to a file, it always involves 
3 main steps:

1 Opening the file.
2 Reading from or writing to a file.
3 Closing the file.

You're going to need to use a library called fstream (which is short 
for file streaming) that gives you the tools to write to a file. 

Just like you were able to stream console input and output using 
iostream, now you'll stream to and from files using fstream.

Once you have the fstream library included, you can create objects 
of the type fstream.

An object can be thought of as being like a variable, and you can 
basically use the words object and variable interchangeably. You use 
terminology like "declare an object" or "initialize an object" just like 
you do for other variables, such as integers.

But using the term object actually implies a little more than what 
you've been learning about with variables, because an object 
can store more than one piece of data and has functions that 
"belong" to it.

Data is stored in files, which are located and saved in a long-term storage 
area, such as on a hard drive or solid-state drive, in flash memory, or even 
over a network in the cloud. Files contain data that you want to either 
read in to your program or write from your program. Streaming is a very 
general and flexible way to handle a wide variety of input and output.

10
IN THIS LECTURE:

File Streaming

Program 10_4

Program 10_5

String Streaming

Program 10_8

Quiz

Quiz Answers

If you've been using only a browser-based C++ editor 
to run programs so far, now is the time to download 
an integrated development environment (IDE). For 
more details, see the C++ QUICK START or consult the 
supplementary material available online.

Files and Stream Operators in C++

http://www.thegreatcourses.com
http://TheGreatCourses.com/CPlusPlus


110Lecture 10 | Files and Stream Operators in C++

out will open for writing. Unless combined 
with trunc or ate, any existing data in the file 
will be overwritten.

app means that you're going to write output 
to the file but only after whatever's already 
there. Nothing gets erased or deleted.

trunc means that you should delete whatever 
is already in the file and start writing from 
scratch. You can only use trunc if out is also 
specified, and they are combined with a single 
vertical bar (|). 

ate writes at the end of the file, usually with 
the same effect as for app but with some ways 
to move around in the file after you've written 
in one place. ate should also be enabled along 
with out, using | in between.

binary can be combined with any of the 
previous options using |. Specifying binary 
means that you'll be outputting just 1s and 
0s directly. Binary is a more efficient way of 
storing data, but it means that people won't 
be able to open a file and look at it as text.

Vectors and strings are objects, and they 
have functions, such as push_back and size 
that "belong" to them. So, variables of type 
fstream are often called objects because they 
also include their own functions.

To create an fstream object, you just declare 
it like you declare other variables. You give the 
type, fstream, along with the object name—in 
this case, my_file.

To actually use the file, you need to link up 
the object name that's in your program with 
some file that's stored on your computer. You'll 
do this through an open command. There's 
a simple version of the open command, but 
in most cases, it's better to use the longer 
version.

To get a file to open in the simple version, you 
write the fstream object name, then a period, 
then open, then a string giving the file name in 
parentheses: 

 <fstream variable>.open(<string with 
file name>);. 

The file name should be the name of the file 
in the computer itself; the one you would see 
if you opened a file explorer. Unless the file 
is in the same directory as your program, be 
sure to include the path information as part 
of the file name. In the following example 
line of code, the fstream object is called my_
file, and the file name on the computer is 
Test.dat:

 my_file.open("Test.dat");.

The longer version of the open command also 
asks you to specify how you want to work 
with that particular file—to read or to write. If 
you're just reading, it's straightforward to open 
the my_file object: my_file.open("Test.
dat");. But writing to a file that's already 
on the computer can have a few different 
interpretations:

 » You can leave everything in the file that's there 

but overwrite it one character at a time.

 » You can leave everything in place and have 

everything you write added onto the end.

 » You can delete everything that's already there 

and start writing to an empty file.

To specify which way to use the file, you'll use 
special syntax. When you open the file, you'll 
give not just the file name as an argument, but 
you'll also have a comma and then a second 
argument, starting with fstream::, which 
describes how you want to use the file:

 my_file.open("Test.dat", 
fstream::2ndArgument).

There are 6 different options:

1 Read as input (in)

2 Output that overwrites one character at a 

time (out)

3 Append (app)

4 Truncate (trunc)

5 The at-end form of output (ate)

6 Binary (binary)

For the fstream variable f, to use 
the binary file input.dat for reading, 
we could write:

f.open("input.dat", fstream::in 
| fstream::binary);.

http://www.thegreatcourses.com


111Lecture 10 | Files and Stream Operators in C++

was cin, but now you can use the fstream 
object as your input stream. You hold the 
result in a string.

When reading from a file, you often want to 
keep processing through the whole file.

To check whether you are at the end of 
the file, you can call a function, eof (which 
stands for end-of-file), that belongs to the 
fstream object. This function doesn't take any 
arguments and returns a Boolean. If you have 
already hit the end of the file, then it returns 
true; otherwise, it returns false.

You can initialize file-stream objects when you 
declare them. This is just like how you initialize 
other variables: by setting them equal to a 
value when you first declare them. You do 
this by putting the information that you would 
put in the open function into parentheses that 
follow the declaration. Then, you don't need 
an open statement!

The 2 pieces of code below are basically 
equivalent, but the second piece of code 
eliminates the open statement to put 
everything on one line.

Every file on a computer has a name, 
followed by a period, followed by a 
short combination of letters called 
the extension of the file, such as .pdf 
or .cpp.

Some people think that just by 
changing the extension, you can 
change what the file actually is—
but that's not the case. If you create 
a file, make sure that the extension 
accurately reflects what type it is.

Once an fstream object has been declared 
and a file has been opened, you can use that 
fstream object to stream to and from the file. 
This works exactly like cin and cout worked 
for the console, except instead of writing cin or 
cout, you use the name of the fstream object.

For example, to write the value 10 to the 
file linked with the fstream variable f, you 
could write:

 f << 10 << endl.

Once you're done using a file, you should 
always close it to ensure that everything is 
written to it and it's left in a valid state. To 
close, you simply take the fstream object and 
call the function close that is a part of it; that 
is, you have the object name, then a period, 
then close, then parentheses, and a semicolon 
to end the line.

 my_file.close(); 

Often, when you're reading information from 
a file, you'd rather read in an entire line of 
the file at once rather than just a single word. 
You can use the getline function to get an 
entire line. getline is a function that takes 2 
parameters: an input stream and a place to 
hold the result. Previously, your input stream 

Click here to see the solution.

Exercise 1

Suppose you have a file named accounts.txt and want to write data to the end of that file, keeping what's there. How could you 
create an object named datafile in your program that lets you write data to the end of your accounts text file?

When you initialize an object like this—
by specifying parentheses and arguments 
when the object is declared—you're using a 
constructor.

fstream my_file;

my_file.open("Test.dat", fstream::in);

fstream my_file("Test.dat", fstream::in);

http://www.thegreatcourses.com


b

a

c

112Lecture 10 | Files and Stream Operators in C++

The eof function is helpful in a while 
loop. You can set up a loop that 
continues until you reach the end-of-file, 
where the eof function returns true (a). 
This loop will thus read every string from 
a file and output it to the console.

Note that the end-of-file is not true when 
you read the last thing in the file; it will 
still be false after reading that last item. 
Only after you've tried to read again 
and there's nothing left to read will eof 
be true.

So, in Program 10_4, notice that you try 
to read a string in from the file before 
you get to the while loop; then, you read 
a string again as the last thing inside the 
loop (b).

Whether you are checking the while 
condition for the first time or after 
completing an iteration of the loop, 
you're always trying to read a string just 
before checking eof. That way, if you fail 
to read a string, you'll see that eof is true 
when you check.

Notice that this while loop is basically a 
for loop. You have an initialization step, 
where you read in one string; you have 
a condition, making sure that eof is still 
false; and each iteration of the loop, you 
read in one more string.

So, you can write this code using a for 
loop (c), which describes how the loop 
behaves in just one statement.

Exercise 2

Click here to see the solution.

Write a program that will generate a file called address.txt 
containing your name and address.

Click here to see the solution.

Exercise 3

Using floating-point numbers, write a program that will read 
from a file named balances.txt and then compute and 
output the average of the numbers.

// Program 10_4

// Use of the eof function in a while loop

#include<fstream>

#include<iostream>

#include<string>

using namespace std;

int main() {

 fstream my_file;

 my_file.open("GroceryList.dat"); 

 string s; 

 my_file >> s;

 while (!my_file.eof()) {

  cout << s << endl;

  my_file >> s; 

 }

 my_file.close();

}
// Program 10_5

// Use of the eof function in a for loop

#include<fstream>

#include<iostream>

#include<string>

using namespace std;

int main() {

 fstream my_file;

 my_file.open("GroceryList.dat"); 

 string s;

 for (my_file >> s; !my_file.eof(); my_file >> s) { 

  cout << s << endl; 

 }

 my_file.close();

}

http://www.thegreatcourses.com


113Lecture 10 | Files and Stream Operators in C++

// STRING STREAMING

In C++, the concept of streaming means 
any way of making data flow into or out of 
something. This means that there are other 
ways to stream that don't involve files or the 
console.

In particular, you can also stream to and from 
string variables. This lets you store data in a 
string, similar to the way you'd store data in a 
file but without having to actually put a file out 
on the operating system. And it lets you avoid 
nagging users for sentinel values when they've 
finished their input.

You can create a string by using streaming 
operations and write to a string like you would 
to a file. You can also stream in from a string, 
processing the data contained in a string, like 
you would the data from a file.

To stream in and out of strings, you'll need a 
new variable type called a stringstream. It's 
a type of variable that links a string to the 
streaming operations you've been using.

To declare and use this new type of variable, 
you'll need to #include the sstream library. 
The stringstream will provide a "link" to and 
store a particular string. This is much like how 
the file stream "links" to a particular file, but 
the stringstream also stores a particular string. 
And just like when you want to read or write 
a file you stream in and out of an fstream, 
when you want to read or write from a string, 
you stream in and out of a stringstream.

Data that you stream in and out of the 
stringstream will be written to or read from the 
string that is stored inside.

So, if you're going to stream data out of a 
stringstream, you need to give it some initial 
value. In other words, you need to tell that 
stringstream: "This is a starter string you 
should use." There's a built-in command, str, 
for specifying the string that you want to use 
as the default value argument.

Program 10_8 is a short program that reads 
in one word from a string. Notice that you 
#include sstream at the beginning (3).

The type of variable you declare is this new 
stringstream-type variable, and the variable 
name here is wordreader (9).

You have a variable of this new type and need 
to initialize it with some particular string. In this 
case, you initialize wordreader with the string 
Apple Banana Cherry (10).

The general form for streaming doesn't 
change whether you are using cin to get 
input from the console, fstream to get an 
item from a file, or stringstream to get an 
item from a string. So, suppose you want to 
read in some string variable named first_
word. You can stream from wordreader into 
first_word (12). This will read in the first 
item from whatever string wordreader holds. 
In other words, the text until the first white 
space is read, and that is then assigned to 
first_word—in this case, Apple. Your output 
verifies that Apple is what has been assigned 
to first_word.

Notice the pattern:

 » iostream is for input/output with 
the console

 » fstream is for files

 » sstream is for strings

// Program 10_8

// Using a stringstream for input

#include<sstream>

#include<iostream>

#include<string>

using namespace std;

int main() {

 stringstream wordreader;

 wordreader.str("Apple Banana 
Cherry");

 string first_word;

 wordreader >> first_word;

 cout << "The first string read 
was: " << first_word << endl;

}

http://www.thegreatcourses.com


114Lecture 10 | Files and Stream Operators in C++

A stringstream can also be initialized with a constructor, similar 
to how you initialize a file. In this case, when you declare the 
stringstream, named wordreader, you just add parentheses with the 
string that you want to initialize inside the parentheses.

You can also stream output to a string. You just declare a 
stringstream variable and then, just like you could use cout to 
stream to the console, you can stream output to that variable.

Inside the stringstream variable will be a string, which will get 
whatever text you stream into it.

To actually get to that string, you again use the str command, but 
this time with no arguments. You just write .str().

As you did for files, you can also use the end-of-file function on a 
stringstream.

When you've read the last character in the string, then eof will be 
true. Notice that that's a little different than files, where you had to 
actually read past the end of the file before eof would return true. 
But eof can still be used to go through all of a stringstream when 
you're processing it.

For simple programs, you could have created a string some other 
way—just by concatenating strings. But you'd have to manually 
convert your data to strings and use concatenation, rather than 
getting to use the stream operators, which handle a variety of data 
types automatically. 

Exercise 4

Click here to see the solution.

Write a program that

 »first asks a user to enter a bunch of integers on one line, 
separated by spaces;

 » then reads that whole line into a string; and

 » then pulls out each number from that string separately, 
outputting them one by one.

Remember to use eof to find when you've reached the 
end of the stringstream.

By processing from a string, you can avoid the need to 
have sentinel values. There's no need to make a user enter 
an artificial value to end input; the user just ends the line 
when he or she is done typing.

READINGS
a Stroustrup, Programming Principles and Practice Using C++, 

chap. 10 and sections 11.3 and 11.4.

b Lippman, Lajoie, and Moo, C++ Primer, chap. 8.

http://www.thegreatcourses.com


115Lecture 10 | Files and Stream Operators in C++

Exercise 4 Solution

Click here to go back to the exercise.

Here's one way that might look. Notice that you don't 
have to bother the user for a sentinel value!

1 // Program 10_12
2 // Reading from a stringstream
3 #include<sstream>
4 #include<iostream>
5 #include<string>
6 using namespace std;
7 
8 int main() {
9  cout << "Enter several integers on one line:" << endl;
10  string input_line;
11  getline(cin, input_line);
12  stringstream string_input(input_line);
13  int val;
14  while (!string_input.eof()) {
15   string_input >> val;
16   cout << "You entered: " << val << endl;
17  }
18 }

Click here to go back to the exercise.

Exercise 2 Solution

Here's what that code might look like.

1 // Program 10_6
2 // Writing an address to a file
3 #include<fstream>
4 #include<string>
5 using namespace std;
6 
7 int main() {
8  fstream my_file("address.txt", fstream::out);
9  my_file << "John Keyser" << endl;
10  my_file << "123 Any St." << endl;
11  my_file << "Somewhere, TX 77777" << endl; 
12  my_file.close(); 
13 }

Click here to go back to the exercise.

Exercise 3 Solution

Here's one way you could write that program. 

1 // Program 10_7
2 // Averaging values in a file
3 #include<fstream>
4 #include<iostream>
5 #include<string>
6 using namespace std;
7 
8 int main() {
9  fstream bank_file("balances.txt", fstream::in); 
10  float f;
11  float total = 0.0;
12  int num_vals = 0;
13  for (bank_file >> f; !bank_file.eof(); bank_file >> f) { 
14   total += f;
15   num_vals++;
16  }
17  bank_file.close(); 
18  cout << "The average was " << total / num_vals << endl; 
19 }

Exercise 1 Solution

Click here to go back to the exercise.

There are a few options that all basically work the 
same way.

a fstream datafile("accounts.txt", fstream::app);

b fstream datafile; 
datafile.open("accounts.txt", fstream::app);

c fstream datafile; 
datafile.open("accounts.txt", fstream::out | fstream::ate);

d fstream datafile("accounts.txt", fstream::out | fstream::ate);

http://www.thegreatcourses.com


116Lecture 10 | Files and Stream Operators in C++

// QUIZ

1 Answer the following questions.

a What is the library that should be included to access files, and what is 

the library used to read and write from a string?

b What is the variable type you use that allows you to stream to and 

from a file, and what type allows you to stream to and from a string?

c What 2 pieces of information are provided when opening a file?

d What is the last thing you should do with a file in your program?

e What designator do you use to write to a file by adding to the end of 

an existing file?

f What function gives you access directly to the string stored inside a 

stringstream?

2 Write a program that creates a file named myname.txt, containing 

your name.

3 Write a program that reads in integer scores from a file, scores.dat, and 

outputs the average score.

4 Write a program that reads in a series of integer scores on a single line 

from the console and outputs the average score.

Click here to see the answers.

http://www.thegreatcourses.com


117Lecture 10 | Files and Stream Operators in C++

// QUIZ ANSWERS

1 a fstream and sstream. These should be 

#included in the program if you wish to use 

file streaming or string streaming.

b fstream and stringstream. Notice that 

while fstream has the same name as the 

library that is included to gain access to it, 

stringstream does not.

c The name of the file on the computer 

system and the way you want to use the file 

you opened.

d Close it. Files should be closed when you are 

done using them.

e There are 2 ways: You can use 

fstream::app to append to the end of 

a file, or you can use fstream::out | 
fstream::ate to designate the file for 

output, starting at the end of the current 

file. The second version would technically 

allow you to move to an earlier point in the 

file and overwrite, too.

f str(). If you have a stringstream variable 

ss, then ss.str() will give you the string 

that is stored within it.

2 Here is one program. Notice that you #include 

the fstream library. You create an fstream 

object, output_file, that you open to link to the 

file myname.txt and designate for output. Next, 

you output one line: a name. Finally, you close 

the file by calling the close command.

1 #include<fstream>
2 using namespace std;
3 
4 int main() {
5  fstream output_file("myname.

txt", fstream::out); 
6  output_file << "John Keyser" 

<< endl; // Use your name
7  output_file.close();
8 }

3 Here is one possible program. Notice that you 

first open the file, specifying that it will be for 

input. You set up variables to hold an individual 

score, the total sum of scores, and the number of 

values read in. Then, you have a loop: You begin 

by reading a value from the file into the variable 

score and do this on every iteration of the loop. 

This continues until you reach the end of the file. 

Note that you could have written this loop as a 

while loop or in other ways, too. 

Within the loop, you simply update your total 

sum of scores and the number of scores you 

have. After the loop, you close the file. Finally, 

you print out the resulting average (the total 

divided by the number of elements), being sure 

to cast one of the variables in the computation 

to a floating-point value (in this case, double, 

though float would have also been fine) so that 

you perform floating-point division rather than 

integer division.

1 #include<fstream>
2 #include<iostream>
3 #include<string>
4 using namespace std;
5 
6 int main() {
7  fstream score_file("scores.

dat", fstream::in);
8  int score;
9  int total = 0;
10  int num_vals = 0;
11  for (score_file >> score; 

!score_file.eof(); score_file >> 
score) {

12   total += score;
13   num_vals++;
14  }
15  score_file.close();
16  cout << "The average was 

" << total / (double) num_vals 
<< endl;

17 }

http://www.thegreatcourses.com


118Lecture 10 | Files and Stream Operators in C++

4 Here is a program; it may be helpful to compare to the previous program to see differences between files and stringstreams. You will read an entire line from input (using 

the getline command) and use this to initialize a stringstream (in this case, ss). You will then read integers until you have read the last value from the stringstream. Note 

that the for loop you used for files should not be used here: the eof function is true for files only after trying to read beyond the last element, while for stringstreams, 

eof is true once the last element has been read. Thus, it is easier to use a while loop for stringstreams, with each iteration reading a value and then updating the sum 

total and the number of scores. The average is output just as with files.

1 #include<sstream>
2 #include<iostream>
3 #include<string>
4 using namespace std;
5 
6 int main() {
7  string inputline;
8  getline(cin, inputline);
9  stringstream ss(inputline);
10  int total = 0;
11  int score;
12  int num_vals = 0;
13  while (!ss.eof()) {
14   ss >> score;
15   total += score;
16   num_vals++;
17  }
18  cout << "The average was " << total / (double) num_vals << endl;
19 }

Click here to go back to the quiz.

http://www.thegreatcourses.com


119Lecture 11 | Top-Down Design and Using a C++ Debugger

// TOP-DOWN DESIGN

The basic idea of top-down design is that you 
take a big task and break it into a sequence 
of smaller tasks, and then you take that and 
break it into a sequence of even smaller tasks, 
and so on.

A pitfall for many beginners approaching a 
software program is jumping right in to writing 
individual lines of code—the smallest unit of 
code there is. Instead, you need to consider 
the programming task as a whole and try to 
break it down into conceptually simpler parts. 
Eventually, you do get down to individual lines 
of code. But at first, you don't need to think 
about the details of the code—just the overall 
steps to follow.

The question programmers face when 
performing top-down design is exactly how to 
break up the task.

In computer science, this hierarchical structure 
as a whole is called a tree. The individual 
elements in the tree are called nodes. The 
single node at the top of the tree is the root. 
If 2 nodes are connected, then the one closer 
to the root is called the parent, and the ones 
farther away are the children. Every node 
except the root has exactly one parent, but 
it can have several children. For a parent, the 
children, as well as all of their own children, 
are branches. The nodes that don't have any 
children are called leaf nodes. 

The number of levels in the tree are referred 
to as the depth of the tree, and the average 
number of children in a non-leaf node is called 
the branching ratio.

By this point in the course, you've accumulated a lot of tools—a lot of 
individual ways to code various things. But there's a difference between 
knowing how to use the individual programming tools and knowing how 
to bring them together to create something larger. Some useful methods 
for approaching bigger software programs are top-down design, 
incremental development, and the debugger tool provided in your 
integrated development environment (IDE).

11
IN THIS LECTURE:

Top-Down Design

Program Fragment 11_1_c

Incremental Development

Program Fragment 11_1_d

Program Fragment 11_1_e

Debugger Tool

Quiz

Quiz Answers

Top-Down Design and 
Using a C++ Debugger

http://www.thegreatcourses.com


120Lecture 11 | Top-Down Design and Using a C++ Debugger

As you think of the design process—that 
is, how you decompose a problem into a 
hierarchy—you're often concerned with 2 
questions: how deep you want the tree to be 
and what branching ratio you want.

There isn't a single answer to either question; 
instead, there are 2 rules of thumb:

1 The branching ratio (the average number of 

children per node) should not be so high that 

you cannot understand all the children of one 

node. In other words, one task should be broken 

up into a few subparts so that it's easy to 

understand how the larger task is broken into 

smaller ones.
2 The depth (the number of levels in the tree) 

should be deep enough that the leaf nodes are 

obvious—meaning that a particular task should 

be something that an experienced programmer 

could readily implement without having to 

understand the other parts of the program. 
Typically, this is just a few lines of code.

In software development, there's 
always more than one way to write 
a program. And while some ways of 
solving a programming problem are 
better or worse than others, there's 
rarely any one way that is truly ideal 
in every regard.

Imagine that you have been asked to create 
a program to predict electricity usage at 
someone's house. You have files available 
with data about past electricity usage as 
well as weather data and information about 
the person's schedule, and you want to get 
a sense of what to expect regarding future 
energy demand.

Let's use a top-down approach to attack this 
problem. 

First, think of the major steps that you'll 
want to go through. You'll want to read in 
information from the data files you have; get 
some information about exactly what you 
want to predict, such as the range of dates; 
do your calculation to actually make the 
prediction; and output some results.

Notice that any one step is simpler—and that's 
the point! For any one idea, breaking it down 
into simpler ideas shouldn't be too difficult. 
Then, you can turn to each of those subtasks 
that you identified and expand them.

For the first subtask, reading the past data, 
you have information about past electricity 
usage, past weather data, and past schedule, 
so you'll want to read in the data from each of 
those files.

Next, you break down each of these items. 
Reading the electric usage file will depend on 
how it's stored, but suppose the data is stored 
in a series of lines, each with a date and an 
electric meter reading. The basic process that 
you'll want to follow is to open the file, read in 
each line, and then store the data—in this case, 
in parallel vectors: one for the date and one 
for the meter reading.

You keep going until you reach a level that 
should be pretty straightforward to code; each 
of your tasks should correspond to just one or 
a few lines of code.

You can continue to walk through the entire 
program at this level of detail for each part.

http://www.thegreatcourses.com


a

b

c

121Lecture 11 | Top-Down Design and Using a C++ Debugger

Once you have the program decomposed with 
a top-down design, then you can begin to 
code it. To get started, this is a great point to 
take the pseudocode you've been generating 
and convert each step into a comment, 
generating comments for each section. These 
comments will help guide your code, and they 
provide an explanation for the purpose of each 
part of the code, both during and after writing 
the code itself.

Considering the tree hierarchy, the root node 
becomes the overall comment for the program 
(2). The next level, the children of the root, 
should each get their own comment. Because 
these are at the higher levels of the hierarchy 
and will be major sections, it can make sense 
to designate these in some way that makes 
them stand out—for example, by using several 
asterisks (a).

Then, you can divide those into the next level 
down. Again, you convert each node into a 
new comment. In this case, you can again use 
a few asterisks to show that these are not the 
most basic levels of the hierarchy (b).

Then, you can go from there to even the 
next level down, converting those nodes to 
comments (c).

Each of these is still pretty self-explanatory. 
Once you've done this for your whole 
program, it's time to start writing code.

// Program Fragment 11_1_c

// Program to Predict Electricity Usage

#include <iostream>

#include <vector>

#include <fstream>

#include <string>

using namespace std;

int main() {

 /***** Read Past Data *****/

 /*** Read Past Electricity Data ***/

 /* Open File */

 /* Loop Through All Lines */ 

 /* Store Date and Meter Reading in Parallel Vectors */ 

 /*** Read Past Weather Data ***/

 /*** Read Past Individual Schedule ***/

 /***** Get Detail To Predict *****/

 /***** Calculate Predicted Usage *****/

 /***** Present Prediction *****/

}

http://www.thegreatcourses.com


// INCREMENTAL DEVELOPMENT

d

122Lecture 11 | Top-Down Design and Using a C++ Debugger

When you develop software, you 
want to construct the software 
piece by piece, and as each piece 
is put into place, you want to 
ensure that you have a stable 
structure—something that is not 
yet complete but that will operate 
just fine for the part that's been 
written. You want to be able to 
see that each piece works and is 
tested as you go along. And if you 
ever write something that's not 
working, you can always take one 
step back and return to a stable 
piece of software.

Unfortunately, often when 
programmers—even experienced 
ones—construct a larger piece 
of software, they'll write lots of 
code, and only at the end, after 
they think they have all the pieces 
in place, do they try to test it. 
If everything actually works, 
it's glorious! But it's extremely 
rare for that to happen. Instead, 
somewhere along the way, they 
made a mistake, and the entire 
program falls apart. Trying to find 
that one mistake is difficult, and 
sometimes even after fixing that, 
there's some other mistake, and 
they can't even figure out if they 
really fixed a problem or not.

This is why you should use 
an incremental development 
approach, in which you code a 
little, test it until you're confident 
that everything up to that point 
is working, code a little more, test 
again, and so on. You never move 
on until you're confident in what 
you already have.

In this case, it's OK to design your 
entire program top-down and 
write out the comments for each 
part ahead of time. But when it 
comes to coding, you want to 
write code in a way that you can 
implement a small chunk of the 
program and test what you've 
written. Generally, this means 
that you'll have to write code in a 
sequential order, though once you 
start writing functions, that won't 
exactly have to be the case.

In this example, the first section 
you encounter is part of reading 
past data, where you first will 
read the past electricity data and 
where you first want to open the 
file (d). That means you declare 
an fstream variable (13) and then 
open it for input (14). Notice that 
you also write a line of code to 
close the file (17).

Incremental development is a critical part of developing 
large software programs. It's almost impossible to 
develop large programs without it.

// Program Fragment 11_1_d
// Program to Predict Electricity Usage 
#include <iostream>
#include <vector>
#include <fstream>
#include <string>
using namespace std;

int main() {
 /***** Read Past Data *****/
 /*** Read Past Electricity Data ***/
 /* Open File */
 fstream electricfile;
 electricfile.open("MeterReadings.dat", 
fstream::in);
 /* Loop Through All Lines */
 /* Store Date and Meter Reading in Parallel 
Vectors */ 
 electricfile.close();

 /*** Read Past Weather Data ***/

 /*** Read Past Individual Schedule ***/

 /***** Get Detail To Predict *****/

 /***** Calculate Predicted Usage *****/

 /***** Present Prediction *****/

}

http://www.thegreatcourses.com


e

123Lecture 11 | Top-Down Design and Using a C++ Debugger

After writing this, before going on to the next 
section, you want to stop and test what you have, 
making sure that you don't have a typo or some 
statement formatted incorrectly.

Once that's tested, it's time to write and check your 
next section—looping through all the lines of the 
program (e).

In this case, you'll assume that the file consists of 
lines, each of which is a date given by a string and 
a meter reading given by an integer. So, to loop 
through all the lines in the file, you'll need to have 2 
variables, labeled date (16) and meter (17). You'll 
try to read them in from the file (18) and loop until 
you've reached the end of the file (19). Inside the 
loop, you'll read the next line (22).

Also inside the loop, you'll have what you want to 
happen each time, which is to add the date and 
reading to vectors (20). But you're not going to 
write that yet; you'll test what you have so far.

To test that you are reading in all the lines from the 
file, you could put in some output statements to 
show what you read in from each line. That's better 
than nothing, but another option that's available is 
using the debugger.

// Program Fragment 11_1_e
// Program to Predict Electricity Usage
#include <iostream>
#include <vector>
#include <fstream>
#include <string>
using namespace std;

int main() {
 /***** Read Past Data *****/
 /*** Read Past Electricity Data ***/
 /* Open File */
 fstream electricfile;
 electricfile.open("MeterReadings.dat", fstream::in);
 /* Loop Through All Lines */ 
 string date;
 int meter;
 electricfile >> date >> meter; 
 while (!electricfile.eof()) {
  /* Store Date and Meter Reading in Parallel Vectors */

  electricfile >> date >> meter; 
 }
 electricfile.close();
 /*** Read Past Weather Data ***/

 /*** Read Past Individual Schedule ***/

 /***** Get Detail To Predict *****/

 /***** Calculate Predicted Usage *****/

 /***** Present Prediction *****/

}

http://www.thegreatcourses.com


124Lecture 11 | Top-Down Design and Using a C++ Debugger

// DEBUGGER TOOL
As you work to develop larger programs, having the use of an IDE can be critical 
to helping examine the state of the program as it progresses, making sure that the 
program is working as intended.

In order to use a debugger, the code must be compiled in what's 
called debug mode, which adds some extra stuff in automatically 
that lets the debugger work. But this mode also makes the code less 
efficient than it will be when fully debugged and then compiled into 
a more efficient form called release mode.

Because most development is done in debug mode, that's the 
default mode for compiling in both Visual Studio and Xcode.

An IDE makes it easy to access and use the 
debugger tool. There are other debuggers, but 
by far the easiest to use are those included 
within an IDE. The one in Visual Studio is 
used here.

Unfortunately, a debugger is not a tool 
that takes the bugs out of your program. In 
fact, a debugger is a tool that lets you step 
through a program's instructions one at a time 
and examine the state of everything in the 
program at that point.

Debuggers have many tools within them that 
can help developers examine their code very 
closely. But there are just a few simple parts 
that are enough to make the debugger a really 
useful tool, and even if you knew every feature 
of the debugger, these would still account for 
90% of what you'd ever do. These features 
are breakpoints, the Step Over and Step Into 
operations, and variable values.

A breakpoint is a point in the code at which 
you want to stop the execution, usually so that 
you can examine the code more closely. When 
you run a program in the debugger, it'll run 
just like you'd expect until you hit a breakpoint. 
The execution will pause just before the line 
where the breakpoint is set. The breakpoint is 
a "break", not a line that gets executed. If you 
don't have a breakpoint set, the code will just 
run all the way through. That's what you've 
been seeing until now.

In Visual Studio, to set a breakpoint, you click 
on the area farthest to the left edge for the 
line where you want to stop.

If you set a breakpoint at the first cout 
statement, this puts a red circle at that line. 
(In Xcode, you click on the thin vertical area 
just left of the line of code and a blue marker 
( ) appears to show the breakpoint.) 

http://www.thegreatcourses.com


125Lecture 11 | Top-Down Design and Using a C++ Debugger

If you run the program, it will run until it gets to the breakpoint and 
then stop. There will be a visual indicator showing which line of code 
will be next to execute: a yellow arrow on top of a red circle in Visual 
Studio (or a highlighted green line in Xcode).

In this case, you're stopping before any lines of output were executed.

Next, set a second breakpoint at the third cout statement. If you 
hit the Continue button at this point, the program will continue 
executing until it hits that next breakpoint. (In Xcode, the Continue 
button is a rightward-facing hollow arrow ( ) below the code.) 

After pressing the 
Continue button, notice 
that the indicator shows 
you're now at this 
new line.

Also notice in the output area of the IDE that you've output 2 lines of 
code: The first 2 cout statements were executed. 

That's one way to go through the program: to set breakpoints and 
continue running between them. But once you've reached a point 
of interest in the code, you often want to examine just one line at a 
time. Putting a breakpoint on every line would be one way to do this, 
but that's overkill.

One way you can progress through the code line by line is by using 
a command called Step Over. In Visual Studio, there is a button near 
the top called Step Over. (In Xcode, the Step Over button ( ) is at 
the bottom, next to the Continue button.) 

At this point, the next line to be executed is the third cout 
statement. If you push the Step Over button, notice that the marker 
showing which line you're about to execute progresses to the next 
executable line: the for statement. The third line was output. 

http://www.thegreatcourses.com


126Lecture 11 | Top-Down Design and Using a C++ Debugger

If you push Step Over again, you are inside 
the for loop. If you push Step Over once 
more, you print the i value and go back to 
the top of the for loop, where you will check 
the conditional. And you can keep stepping 
through.

You'll notice that you go through all iterations 
of your loop and eventually leave once the 
loop condition is false.

To stop your debugging session, you can hit 
the square Stop button, which will stop the 
entire run.

Besides the Step Over command to step 
over the next line of code, there's a Step Into 
command, which doesn't just say "execute the 
next line of code." If that next line of code has 
a function call in it, then the execution goes 
into that function. That way, you'll be able to 
see how the function itself is working. There's 
also a Step Out button if you are tired of 
looking inside a function's inner workings and 
want to return to the place it was called.

KEYBOARD SHORTCUTS

START DEBUGGING STEP OVER

WINDOWS F5 F10

MAC ⌘R F6

There's another key part of the debugger. 
When the debugger runs, there is a window at 
the bottom that lets you examine the values of 
variables.

In the electric usage program, put a 
breakpoint right before the first line where 
you stream in from electricfile and then 
start the debugger. It will execute right up to 
that line.

At the bottom of the screen, you should see 
a window that shows variable values. In Visual 
Studio, it will have 3 tabs titled Autos, Locals, 
and Watch 1, and one of them (probably 
Locals) will be selected. You should see 3 
items listed there. In alphabetical order, they 
are the 3 variables you have at this point in the 
program: date, electricfile, and meter.

Next to each of them is the value of that 
variable. Notice that neither date nor meter is 
initialized to anything. The date should have 
an empty string as its value, while the meter 
could have any possible number. You haven't 
read anything into either one of them yet. The 
variable electricfile doesn't have a very 
meaningful value; it's reporting on how an 
fstream is implemented.

If you go forward one line, by pressing Step 
Over, you move on to the next line of the 
code. You also see that the values in both 
date and meter have been updated. The 
previous line read data into both of them 
from the file. In this case, you have a date of 
1/1/2018 and a meter reading of 1024. As 
you go through the code, you can keep an 
eye on the window to see what the values of 
variables are.

http://www.thegreatcourses.com


127Lecture 11 | Top-Down Design and Using a C++ Debugger

One other useful item in the 
debugger is Call Stack. In Visual 
Studio, Call Stack is found in the 
lower right, and in Xcode, it's in the 
lower left, where there's a window 
showing the Call Stack.

If you have written your own 
functions and stepped into those, 
then the Call Stack will also show 
which functions have been called 
in order from other functions. In 
Visual Studio, the Call Stack will 
also show the line numbers.

The whole reason you're using the 
debugger here is to verify that 
your code is working as expected. 
The debugger will also be very 
useful when you do encounter 
bugs and need to find where 
they're occurring.

At this point, you could expand on 
the program that has been started 
here, first completing the full top-
down design of the entire program 
and then incrementally building 
every piece of it. 

READINGS
a Top-down design is a long-standing software development practice and is a typical approach used in procedural programming for languages 

that do not support object-oriented design, such as C. 

b Top-down design with functions can thus be found in several C textbooks—e.g., Problem Solving and Program Design in C (8th ed.) by 
Jeri R. Hanly and Elliot B. Koffman—or C++ textbooks with more of a build-on-C flavor—e.g., Problem Solving, Abstraction, and Design Using C++ 
(6th ed.) by Frank L. Friedman and Elliot B. Koffman.

When approaching any large programming problem, start 
with a top-down design, build it incrementally, and use the 
debugger to help you verify that things are working.

http://www.thegreatcourses.com


128Lecture 11 | Top-Down Design and Using a C++ Debugger

// QUIZ

1 When using a debugger, what button/command would you use to do each 

of the following?

a Designate a line of code to stop at during execution.

b Execute the current line of code.

c Go into the function being called in the current line of code.

d Look at the value currently stored in a variable.

2 A tree is used repeatedly in software development and in describing 

organizations that are formed from top-down design. What is the name 

used for each of the following elements of a tree?

a The single node at the top of the tree

b The single node that comes above another node in the tree

c The node(s) that come below others in the tree

d The nodes that have no nodes below them

3 Answer the following questions about performing top-down design of a 

program.

a When do you know that you have gone far enough—that is, 

broken the design down into small enough parts?

b When breaking one idea/task into several others, how do you 

determine what level of detail to subdivide the idea/task into?

4 If you had the following top-down design of a program, how might you set 

up the initial program? Note: You do not need to fill in the program, but 

you should set up the program so that code could then be written to make 

it work.

a Compute profit generated over time period.

i Gather data information.

1 Prompt user for dates of interest.

2 Read in data from user.

ii Gather records of income and expenses.

1 Get purchasing records from time period.

2 Get payroll expenses from time period.

3 Get capital/service expenses for time period.

4 Get sales records from time period.

iii Compute total income.

iv Report data to user.

Click here to see the answers.

http://www.thegreatcourses.com


129Lecture 11 | Top-Down Design and Using a C++ Debugger

// QUIZ ANSWERS

1 a Set a breakpoint. In an IDE, this is often done by clicking at a point in front of the line of code.

b Step Over. After executing, the debugger will go on to the next line of code in the same function or, if it was the last line of a function, leave the function and return 

to where it was called from.

c Step Into. If the current line has a function call in it, then the debugger will go into the function, to the first line in the function body.

d Use the Watch list. Most IDE debuggers will have a sub-window in which you can watch variables you care about. Some debuggers will have other options, 

such as letting you type a variable you want the value of.

2 a Root. There is a single root node to the tree. This can be thought of as the top of the hierarchy, like the CEO in an organization.

b Parent. In a tree, each node except the root has one parent. This is the element that is higher in the hierarchy, like a person's manager in an organization.

c Child/children. A node may have multiple children, one child, or none. Children are the next level down in the hierarchy, like the people directly supervised in an 

organization.

d Leaf. Leaf nodes are those with no children, like the people in an organization who are not managing anyone else.

3 Top-down design takes practice and experience, and there is never a single right answer. So, all approaches are just guidelines.

a You stop when a task is at a level that implementing it in code will be obvious. In other words, an experienced programmer should have no difficulty taking the 

lowest level of design and generating several lines of code to implement it.

b A task should be broken into a set of simpler subtasks so that each subtask is still a single coherent idea and it is easy to understand the greater task as a 

combination of the few subtasks.

http://www.thegreatcourses.com


130Lecture 11 | Top-Down Design and Using a C++ Debugger

4 The initial step to follow is to convert the outline of the program into comments. Then, in later stages, you would fill in the code corresponding to each comment. The root gives 

the overall purpose of the program and can be placed at the beginning of the program. The other steps will take place in main. In the following code, the higher levels of the 

hierarchy are specified with /*** ***/ comments, while lower levels use // comments. The blank lines show where code will be written.

1 /* Compute profit generated over time period */
2 #include<iostream>
3 using namespace std;
4 
5 int main() {
6  /*** Gather data information ***/
7  // Prompt user for dates of interest
8 
9  // Read in data from user
10 
11  /*** Gather records of income and expenses ***/
12  // Get purchasing records from time period
13   
14  // Get payroll expenses from time period
15  
16  // Get capital/service expenses for time period
17   
18  // Get sales records from time period
19 
20  /*** Compute total income ***/
21 
22  /*** Report data to user. ***/
23 
24 }

Click here to go back to the quiz.

http://www.thegreatcourses.com


131Lecture 12 | Creating Your Own Functions in C++

Functions are a key part of programming. They enable you to organize 
your programs by breaking up ideas into individual pieces—the 
functions—and they can sometimes save a lot of repeated coding. You've 
already been using functions; you've imported functions from libraries 
and used functions to get input, for file operations, and with vectors. 
All of these functions performed some computation for you, all by just 
making a function call.

12 IN THIS LECTURE:

Functions as Black Boxes

Creating Your Own Functions

The Function Body

Program 12_1

Conceptual Separation

Program 12_6

Program 12_7

Program 12_8

Scope

Program 12_ERROR_1

Program 12_ERROR_2

Program 12_10

Program 12_11

Program 12_12

Quiz

Quiz Answers

Creating Your Own 
Functions in C++

// FUNCTIONS AS BLACK BOXES

The easiest way to think of a function is 
as a so-called black box. You have some 
program, consisting of various instructions. 
When you want something to happen, you 
make a function call. You possibly send the 
function some input parameters; these are 
the arguments. Then, the function takes some 
action, and possibly there's a final return value 
sent back to the part of the program that 
called the function. But the inner workings 
of the function—that is, knowing how the 
function does what it does—are hidden from 
the main program.

On the other hand, when you write a function, 
you don't have to worry about how it is 
being used. You might be getting some input 
parameters, and you might know that you 
need to return some particular value. But you 
shouldn't need to worry at all about when 
and how that function is being called. You 
don't care about the function's role in the 
main program; you just need to know that the 
function is going to do its job.

This brings up the 2 main reasons you have 
functions:

1 Functions offer a conceptual separation of ideas. 

Functions let you write code without worrying 

about details. Either you're writing a function 

and not worrying about how it is being called 

or you're writing the calling program and not 

worrying about how the function works.
2 Using functions lets you avoid the work of 

writing the same code over and over again.

http://www.thegreatcourses.com


d
a b c e

132Lecture 12 | Creating Your Own Functions in C++

// CREATING YOUR OWN FUNCTIONS

Suppose you want to write a function that 
takes in a string and returns the number of 
words the string contains.

The first part of the definition of a function 
is the return type (a), which states what 
the type of the return value will be. In this 
example, because you're counting the number 
of words, you'll want to return an integer, so 
the type is int.

The next part of the definition is the function 
name (b)—the name you'll use to call the 
function. You're writing a function that will 
count words, so word_count seems like a 
reasonable name for the function.

Then, there will be a pair of parentheses, inside 
of which will be the parameters (c). For now, 
you need to specify the type of the parameter 
being passed in and give it a name. In this 
example, you are passing in a string and you 
are going to be counting words in that string, 
so the parameter is of type string and has the 
name str_to_count.

The part of a function up to this point is called 
the function header (d), which contains the 
return type, the name of the function, and 
the parentheses giving the parameter list. The 
function header contains all of the information 
needed for the black box of the function to 
interact with the larger program.

Finally, there is a pair of curly braces, inside 
of which will be the actual instructions for the 
function (e). This is called the function body. 
These are the actual contents of the black 
box—the commands run whenever the 
function is called. (For this initial code snippet, 
there are no specific commands for the 
function body.)

When naming functions, you should 
take the same care as you do when 
naming variables. Use a descriptive, 
memorable, and consistent name.

When you've made function calls, 
you've put values in the parentheses 
and called them arguments—the 
values that are given to the function 
that you want the function to use to 
do its thing with.

As you're now writing your own 
functions, you'll again have values that 
are specified in parentheses, but now 
these values are called parameters.

The parameters are directly tied to 
the arguments. The arguments that 
you put in parentheses when you call 
a function match up one-to-one with 
the parameters that you use inside the 
function itself. Because the arguments 
and parameters are linked together so 
closely, sometimes the terms are used 
interchangeably. But if you're being 
careful, arguments will be the values 
in the function call, and parameters 
will be the values that come inside the 
parentheses of the function itself.

Sending in the parameters is called 
passing. When you transfer a value 
from the calling side to the function, 
you say that you are "passing in" a 
parameter.

int word_count(string str_to_count) { ... } 

http://www.thegreatcourses.com


133Lecture 12 | Creating Your Own Functions in C++

You've used functions that take one parameter, more than one 
parameter, and even no parameters. You can specify each situation—
one parameter, multiple parameters, or no parameters—in a function 
header. You've already defined a function, word_count, that took a 
single parameter, a string.

If you have multiple parameters, you just separate the parameters 
with commas. Each of the parameters is defined the same way an 
individual parameter would be. But note that each parameter needs 
both a type and a name.

To define a function that has no parameters, you put nothing 
between the parentheses.

Sometimes you don't need a function to return anything; it just 
needs to do something on its own and not return a type of any sort. 
In this case, you can specify a different return type, called void.

When a program is compiled, the function definition should occur in 
the program before the function is actually called. Typically, functions 
are defined near the beginning of the file. You write the function 
definitions, and then later you can make calls to that function. 
When the compiler comes along and encounters the function call, 
it sees a function name, with some arguments of various types, 
and it matches that up to the function with that name and those 
parameters.

Actually, it's slightly more complicated; all the compiler really needs 
to know at first is the function header. In fact, there are ways you can 
give just the function header information and put the body of the 
function elsewhere. You'll learn more about this in lecture 15.

Exercise 1

Click here to see the solution.

For each of the following situations, what would the return 
type be?

1 A function that tells you whether a certain set of 
measurements indicates danger or not. 

2 A function that prints out a warning message if there 
is danger.

3 A function that computes the recommended dosage of a 
medicine given a person's age and weight.

4 A function that will get a person's address by reading it 
from a file.

Exercise 2

Click here to see the solution.

Imagine that you want a function to calculate how many 
days it is until the next leap year day, February 29. How 
could you write the function header for such a function?

http://www.thegreatcourses.com


f

134Lecture 12 | Creating Your Own Functions in C++

// THE FUNCTION BODY

The body of a function is the set of 
instructions that you want to follow when 
the function is called. When you see a 
function call, you can think of it almost as if 
the commands in the body of the function 
definition are being stuck into the code 
right there.

Suppose you're going to write a tic-tac-toe 
program and that one thing you want to be 
able to do is print out help for someone who 
doesn't know the rules.

In this case, you can define a function called 
print_help to print that information. The 
function doesn't need any parameters, and 
it doesn't need to return anything. So, the 
function header will be just void print_
help() (6).

Then, you can define the body of the function. 
Inside of the curly braces, you just have a 
set of cout statements to output the helpful 
information (f). You could put these all in one 
cout, or in even more cout statements, if you 
wanted to.

Then, in the main program, you can make 
a call to the function by just writing print_
help() (18). When this happens, the text you 
had in the cout statements is printed.

Within the body of the function, you can 
declare variables, just like you would in the 
main program. And you can use this variable 
just like you would use a variable in the main 
program.

Each of the parameters also becomes a 
variable inside of the function's memory. The 
name in the variable is the name that you 
used for the parameter, and the variable is 
initialized with whatever value was given as an 
argument.

To return a value from a function, the 
command is just return and then the value 
being returned.

As soon as the function encounters the 
statement return, the function ends, and it 
returns that value to the main program.

The return command will return as soon as 
it's encountered. So, if you have multiple lines 
of code and encounter a return statement 
before you've executed all of them, then you 
just miss some lines.

Also, if a function has a void return type, then 
you just write return—no need for a value to 
be returned.

Or you can just leave off the return 
statement if the return type is void; the 
function just automatically returns at the end.

// Program 12_1

// Demonstrating a function body

#include<iostream>

using namespace std;

void print_help() {

 cout << "The object of the 
game is to get three of your 
mark in a single row," 

  << "a single column, or 
on a diagonal." << endl;

 cout << "One player will use 
an 'X' mark, and one wil use an 
'O' mark." << endl;

 cout << "The players will 
take turns placing a mark in an 
empty square in an 3x3 grid." 

  << endl;

 cout << "The first player 
to get 3 marks in the right 
combination will win," 

  << "but if neither does 
after all 9 cells are filled, the 
game ends in a tie." 

  << endl;

}

int main() {

 print_help();

}

http://www.thegreatcourses.com


g

135Lecture 12 | Creating Your Own Functions in C++

Let's figure out how you would write a function 
that counts the number of words in a string.

One option is to take the string and turn it into 
a stringstream. Then, you could read individual 
strings from the stringstream until you reached 
the end. If you counted how many times you could 
read a word from the stringstream, that would be 
the number of words in the original string.

To implement this, you'll create a stringstream 
(10)—in this case, named ss—initialized to the 
string that was an input parameter, str_to_
count (8).

Then, you'll declare 2 variables. The integer count 
will keep track of how many words you read in 
from the stringstream, so you initialize it to 0 (11). 
You'll also create a string variable named word to 
hold each word you read (12).

Next, you'll have a while loop that continues 
as long as you haven't reached the end of the 
stringstream (g). Inside the loop, you'll read in a 
new word and increment count. This will keep 
happening as long as the loop's condition is met—
that is, until ss has nothing else.

Finally, you return the count (18).

In the main program, you can call the function 
word_count with a string argument (23) and you'll 
get back the number of words that are in that 
string.

// CONCEPTUAL SEPARATION

// Program 12_6

// A more complete function: counting words in a string

#include<iostream>

#include<string>

#include<sstream>

using namespace std;

int word_count(string str_to_count) {

 // Turn the string into a stringstream

 stringstream ss(str_to_count);

 int count = 0;

 string word;

 // Count the number of individual words by reading from the stringstream

 while (!ss.eof()) {

  ss >> word;

  count++;

 }

 return count;

}

int main() {

 string s = "This is a string that has eight words.";

 cout << "There are " << word_count(s) << " words in the string." << endl;

}

http://www.thegreatcourses.com


h

136Lecture 12 | Creating Your Own Functions in C++

That isn't the only way you could implement that 
function. Another option would be to count the 
spaces between words. If you can assume that 
there's just one space in between each word, then 
the number of words in the string will be just one 
more than the number of spaces in the string.

To implement the function this way, you'll first 
declare a count variable (10) and a variable i (11).

Then, you'll loop through all the characters of the 
string, one by one, letting i take on the values from 
0 to one less than the string length (h).

You'll check each character to see if it is a space 
(13). If so, you'll increment count (14).

Finally, you'd return count+1 (18), remembering 
that there will be one less space than the number 
of words.

In terms of the main function that calls the 
word_count function, it is exactly the same as 
before (23).

// Program 12_7

// A more complete function: counting words in a string, alternative

#include<iostream>

#include<string>

#include<sstream>

using namespace std;

int word_count(string str_to_count) {

 // Count number of spaces

 int count = 0;

 int i;

 for (i = 0; i < str_to_count.size(); i++) {

  if (str_to_count[i] == ' ') {

   count++;

  }

 }

 // Number of words is one more than number of spaces

 return count + 1;

}

int main() {

 string s = "This is a string that has eight words.";

 cout << "There are " << word_count(s) << " words in the string." << endl;

}

http://www.thegreatcourses.com


i

137Lecture 12 | Creating Your Own Functions in C++

There's actually a problem with this 
implementation. If you just count the number 
of spaces, you'll count extra words when you 
have double spaces.

You can make a small change—to verify that 
both the character is a space and that the 
one before it was not a space—to fix this (i). 
In this way, if there are a bunch of spaces 
together, only the first one counts for counting 
a word.

This illustrates one of the main benefits of 
functions: the conceptual separation. Notice 
that in the main routine, you didn't need to 
worry about how the function was written; you 
just made a call to word_count and expected 
it to give you a result. You could have 2 totally 
different implementations of the function, but 
they'd look exactly the same when they were 
being called.

But you do have to be careful when you 
write the functions that you don't make 
hidden assumptions—such as the single space 
between words—that would make the function 
behave differently than expected.

Exercise 3

Click here to see the solution.

Write a function that takes in a vector 
of integers and returns the largest one.

// Program 12_8

// A more complete function: counting words in a string,

// alternative handling multiple spaces

#include<iostream>

#include<string>

#include<sstream>

using namespace std;

int word_count(string str_to_count) {

 // Count number of spaces

 int count = 0;

 int i;

 for (i = 0; i < str_to_count.size(); i++) {

  // Only count if not a consecutive space

  if (str_to_count[i] == ' ' && str_to_count[i - 1] != ' ') {

   count++;

  }

 }

 // Number of words is one more than number of spaces

 return count + 1;

}

int main() {

 string s = "This is a string that has   eight words.";

 cout << "There are " << word_count(s) << " words in the string." << endl;

}

http://www.thegreatcourses.com


138Lecture 12 | Creating Your Own Functions in C++

The last thing to keep in mind when writing your own functions 
is the idea of scope, which is actually relevant for almost all of 
programming. Scope refers to the range of a program in which a 
variable is defined. If a variable is defined in a part of a program, it's 
said to be "in scope"; if it's not defined in a part of a program, it's 
said to be "out of scope."

In the way you've usually been thinking about programs so far, a 
variable is in scope as soon as it's declared, and it stays that way 
until the end of the program. You can't use it before you declare it, 
and once it's declared, it can be used in the rest of the program.

But that's not actually the case. In reality, scope works the way loops 
work: A variable is in scope only within its own section (denoted by 
curly braces) of the program.

In Program 12_ERROR_1, notice that the variable a is declared inside 
the main body of the main function, so it is in scope throughout 
main. But you declare a variable, b, inside the body of a loop that is 
in scope only within that body of the loop. In fact, each iteration of 
the loop generates a whole new variable, because the previous one's 
scope ends as soon as it reaches the end of the loop. So, when you 
try to print out b from outside the loop, you'll get a compiler error 
that tells you the variable is out of scope.

Notice that this means that the variables defined in the main routine 
are not in scope inside the black box of another function you might 
create. For example, Program 12_ERROR_2 will give an error when 
compiling. The variable a is defined in the main function, so variable 
a is in scope there. But when you try to use variable a inside another 
function, it will be out of scope (7).

// SCOPE

// Program 12_ERROR_2

// Scope Error: a is only defined inside main

#include<iostream>

using namespace std;

void demo_func() {

 cout << a << endl;

 return;

}

int main() {

 int a = 3;

 demo_func();

}

// Program 12_ERROR_1

// Scope Error: b is only defined inside the 
while loop

#include<iostream>

using namespace std;

int main() {

 int a = 3;

 while (a > 0) {

  int b = 10;

  a -= b;

 }

 cout << b << endl;

}

http://www.thegreatcourses.com


139Lecture 12 | Creating Your Own Functions in C++

One of the nice things about scoping 
is that you can reuse variable names in 
different places without causing conflicts.

In Program 12_10, notice that you 
have the variable balance declared in 
the main function that is used to refer 
to an account balance (13). You also 
have another variable named balance 
declared in the function calculate_loan 
(7), this time referring to a remaining loan 
balance.

What happens here is that there are 2 
separate sections of memory: the main 
function's section of memory and a 
section of memory for calculate_loan, 
each of which has a variable named 
balance. When you are in the main 
routine, any reference to balance will 
refer to its variable balance, and when 
you're in calculate_loan, you'd be 
referring to its variable balance.

So, the output statements from the main 
routine always show that the value of 
balance is 75, both before and after 
the function call. Meanwhile, the output 
statement in calculate_loan shows that 
the value of balance is 475.

// Program 12_10

// Same variable names in different scopes

#include<iostream> 

using namespace std;

float calculate_loan(float principal, float payment) {

 float balance = principal - payment;  // Remaining balance of loan after payment

 cout << "Inside the function, the value of the loan balance is: " << balance << endl;

 return balance;

}

int main() {

 float balance = 100.0; // Set up a variable to keep track of an account balance

 float loan_principal = 500.0;

 float loan_payment = 25.0;

 // Now use that to pay a loan

 balance -= loan_payment;

 cout << "Before the function call, the value of the account balance is: " 

  << balance << endl;

 loan_principal = calculate_loan(loan_principal, loan_payment);

 cout << "After the function call, the value of the account balance is: " 

  << balance << endl;

}

http://www.thegreatcourses.com


140Lecture 12 | Creating Your Own Functions in C++

You can actually declare variables outside of the main routine! These 
are called global variables, and they are in scope for the entire 
program—in every function. 

That said, it's much better practice to use local variables; that is, only 
use variables declared in the current function and pass information 
between functions through parameters and return values. That way, 
you can see exactly what is going into and coming out of a function 
by looking at the header. 

// Program 12_11

// Use of a global variable

#include<iostream>

using namespace std;

int a;

void my_function() {

 a++;

}

int main() {

 a = 1;

 cout << "Before the function call, the 
value of a is: " << a << endl;

 my_function();

 cout << "After the function call, the value 
of a is: " << a << endl;

}

// Program 12_12

// Use of local variables only

#include<iostream>

using namespace std;

void my_function(int& x) {

 x++;

}

int main() {

 int a = 1;

 cout << "Before the function call, the 
value of a is: " << a << endl;

 my_function(a);

 cout << "After the function call, the value 
of a is: " << a << endl;

}

http://www.thegreatcourses.com


141Lecture 12 | Creating Your Own Functions in C++

Exercise 2 Solution

Click here to go back to the exercise.

Here's one possible solution.

 int days_to_leap_day(int day, int month, int year)

Exercise 3 Solution

Click here to go back to the exercise.

Here's what that might look like.

1 // Program 12_9
2 // Function to find largest value in vector
3 #include<iostream>
4 #include<vector>
5 using namespace std;
6 
7 int find_largest(vector<int> v) {
8  int largest = v[0];
9  for (int i = 1; i < v.size(); i++) {
10   if (v[i] > largest) largest = v[i];
11  }
12  return largest;
13 }
14 
15 int main() {
16  vector<int> test_data = { 12, 35, 21, 10, 18 };
17  int large_one = find_largest(test_data);
18  cout << large_one << endl;
19 }

Exercise 1 Solution

Click here to go back to the exercise.

1 The function would need to return a Boolean; it is trying to tell whether 
something is true—there is danger—or not.

2 That would be a void return type. There's nothing to return; the 
function just outputs some information.

3 That would probably be a float or double return type; it's computing a 
numerical value and needs to return a numerical value.

4 That would probably be a string return type. The address would need 
to be returned, and that would likely be in a string variable.

READINGS
a Stroustrup, Programming Principles and 

Practice Using C++, section 4.5.

b Lippman, Lajoie, and Moo, C++ Primer, 
sections 6.1 and 6.3.

http://www.thegreatcourses.com


142Lecture 12 | Creating Your Own Functions in C++

// QUIZ

1 What is output from the following program?

1 #include<iostream>
2 using namespace std;
3 
4 void test_func(int a) {
5  cout << a*a << endl;
6 }
7 
8 int main() {
9  test_func(2);
10  test_func(3);
11 }

2 What would be the function header for a function named get_distance 

that takes in 2 integer parameters and returns a floating-point value?

3 Write a function that will take in a number of weeks and a number of days 

and return the total number of days.

4 What is the output of the following code?

1 #include<iostream>
2 using namespace std;
3 
4 int test_func(int value) {
5  value = 10*value;
6  cout << "Value in function is: " << value 

<< endl;
7  return value;
8 }
9 
10 int main() {
11  int value = 3;
12  int argument = 2;
13  int retval;
14  retval = test_func(argument);
15  cout << "Value is: " << value << endl;
16  cout << "Argument is: " << argument << endl;
17  cout << "Return Value is: " << retval << endl;
18 }

Click here to see the answers.

http://www.thegreatcourses.com


143Lecture 12 | Creating Your Own Functions in C++

// QUIZ ANSWERS

1 Here is the output:

4
9

2 Here is one possibility:

float get_distance(int a, int b)

Note that the parameters could be named something besides a and b.

3 Here is one option:

int num_days(int weeks, int days) {
 return 7*weeks+days;
}

Notice that the function name indicates what it is computing (number 

of days), and it takes in 2 parameters: the number of weeks and days. It 

returns an integer. The body of the function can be just a single line: the 

number of weeks times 7, plus the number of days. This value is returned 

from the function.

4 Here is the output:

Value in function is: 20
Value is: 3
Argument is: 2
Return Value is: 20

Notice that neither value nor argument is changed by the function 

call. Within the function, the variable value refers to a different "box" 

of memory than the variable value from the main program. So, when 

you call the function, the value of argument (2) is copied into the local 

variable value inside the function. That value is multiplied by 20, is output, 

and then is returned, where it is assigned to retval. Neither value nor 

argument in the main program is changed.

Click here to go back to the quiz.

http://www.thegreatcourses.com


144Lecture 13 | Expanding What Your Functions Can Do in C++

As you've learned, functions help you separate parts of your code, 
providing a break between different ideas, and they let you avoid having 
to think about the code for a problem you've already solved. But there 
are other things you can do with functions that you haven't learned 
how to do yet, including handling cases where functions have different 
parameters and modifying big pieces of data.

13 IN THIS LECTURE:

Overloading Functions

Program 13_1

Program 13_2

Program 13_3

Program 13_3_ERROR

Setting Default Parameters

Program 13_5

Using References

Program 13_7

Program 13_8

Quiz

Quiz Answers

Expanding What Your 
Functions Can Do in C++

// OVERLOADING FUNCTIONS

This is one way to write a function that returns 
the average of 3 numbers.

What if you want to modify this function? 
What if you really wanted the average of just 
2 numbers or wanted to handle averages of 4 
numbers?

// Program 13_1

// Function review: function to average 3 numbers

#include <iostream>

using namespace std;

float average(float a, float b, float c) {

 return (a + b + c) / 3.0;

}

int main() {

 cout << "The average of 10, 35, and 17 is: " << average(10, 35, 17) << endl;

}

http://www.thegreatcourses.com


a

b

145Lecture 13 | Expanding What Your Functions Can Do in C++

You can create 2 new functions, each with 
the same name, average, but with different 
numbers of parameters. This approach is 
called function overloading—creating more 
than one implementation with the same name.

You'll create a version of average that has just 
2 parameters: a and b. Everything is basically 
the same; you just return the sum of the 2 
parameters divided by 2.0 (a).

You'll also create a version of average that has 
4 parameters, a through d. Again, the function 
is basically the same, with just one more 
parameter and the average computing the 
sum of 4 parameters divided by 4.0 (b).

When you call average, you can then call 
it with either 2, 3, or 4 parameters. And the 
compiler will know to call the appropriate 
function, whether it's the one with 2, 3, or 4 
parameters.

Notice that when you overload a function, 
it's because it makes sense to use the same 
name for all the variations; you don't want 
to overload functions when the different 
variations will do very different things.

The function's header defines the function 
signature, which is the name of the function 
but also specifies the number and types of 
parameters the function by that name will 

take in. When there is a call to a function, 
the compiler will match the call to the same 
function signature—the one that has the right 
name, the right number of parameters, and 
the right types of parameters. The names of 
the parameters don't matter in the signature; 
it's just their number and types.

In the Program 13_2, you have a function 
named average that takes 2 floating-point 
parameters, another function named average 
that takes 3 floating-point parameters, 
and another function named average that 
takes 4 floating-point parameters. These 
function implementations are all distinct from 
each other.

While the signature includes the function name 
and the number and types of parameters, it 
does not include the return type. So, it's not 
possible to overload by having 2 functions of 
the same name just returning different types—
for example, one returning a string and one 
returning a float.

However, you can convert from one type to 
another when a function is called. If you call 
a function with parameters that don't exactly 
match the signature but can be automatically 
converted to ones that match the signature—
such as converting integers to floats—then 
the conversion is automatic. That only works if 
there's just one possible matching signature.

No 2 functions are allowed to have the same signature, because the compiler needs 
to be able to distinguish between functions.

// Program 13_2

// Multiple parameter options 
with different function 
signatures

#include <iostream>

using namespace std;

float average(float a, 
float b) {

 return (a + b) / 2.0;

}

float average(float a, float b, 
float c) {

 return (a + b + c) / 3.0;

}

float average(float a, float b, 
float c, float d) {

 return (a + b + c + d) / 4.0;

}

int main() {

 cout << "The average of 10, 
and 35 is: " << average(10, 35) 
<< endl;

 cout << "The average of 10, 
35, and 17 is: " << average(10, 
35, 17) << endl;

 cout << "The average of 
10, 35, 17, and 21 is: " << 
average(10, 35, 17, 21) << endl;

}

http://www.thegreatcourses.com


146Lecture 13 | Expanding What Your Functions Can Do in C++

In this variation, you have the original average function 
that takes in 2 floats (c). You also create another version 
that takes in 2 integers. It also returns an integer, instead 
of a float. In this case, you'll perform integer division in 
the interior; because the parameters are integers and you 
divide by 2, not 2.0, you'll have an integer result (d).

If you call the function with 2 integers, the compiler 
will match it up with the function signature that has 
2 integers. Because this is an exact match, that is the 
function it will use. There won't be any ambiguity because 
there's nothing that needs to be converted. So, in this 
case, a call with 2 integers, 10 and 35, gives an integer 
result, 22, rather than the floating-point result of 22.5.

// Program 13_3
// Multiple parameter types
#include <iostream>
using namespace std;

float average(float a, float b) {
 return (a + b) / 2.0;
}

int average(int a, int b) {
 return (a + b) / 2;
}

int main() {
 cout << "The average of 10 and 35 is: " << average(10, 35) << endl;
}

c

d

VARIABLE TYPES IN C++

For a computer, each variable is a way to interpret some bits in memory—a group 
of 1s and 0s that gets interpreted to mean an integer or a floating-point number, for 
example. Each variable also has some size of memory that it is taking up.

In C++, you can specify, to a degree, how many bits are used to represent numbers. The more bits that are 
used, the larger the number that can be represented. For integers, that means that you can represent larger 
integers. For floating-point numbers, that means that you can use more digits of precision and can represent 
both much larger and smaller numbers.

For integers, you have several options, ranging from a char (a single character) all the way up to a long 
long int. The exact sizes of integers aren't specified, but you do know that a long long int has at least as 
many bits as a long int, which has at least as many as an int, and so on. Choosing larger integers lets you 
represent larger numbers, but at the cost of more memory to store values.

Similarly, floats have a longer version, the double, and an even longer version, the long double. 

INTEGERS
char

short int
int

long int
long long int

FLOATS
float
double

long double

http://www.thegreatcourses.com


147Lecture 13 | Expanding What Your Functions Can Do in C++

One way to get around this is to 
make sure you call with floating-
point numbers. Any time you write a 
floating-point literal, you can append 
an f onto the number to indicate 
that the number should be treated as 
a float:

There are similar methods for other 
types; for example, adding ll after a 
number ensures that it's treated as a 
long long int.

Now this code will compile and run 
just fine.

When passing parameters, remember 
that the different types are actually 
different. And that means that if 
you have a function expecting one 
type and call it with a different type, 
it often needs to perform a type 
conversion in order to match the call 
to a specific signature. Some of these 
type conversions can be very tricky.

This is the same program from 
before, but now you're calling it with 
10.0 and 35.0 rather than 10 and 35.

When you compile this code, you'll 
probably find that you get a compiler 
error, saying that you're trying to 
make a call to a function named 
average and are giving 2 doubles as 
parameters.

The compiler can't figure out if it's 
better to convert those to floats and 
use the float version of average 
or to convert those to integers and 
use the int version of average. It's 
ambiguous what's wanted, so it won't 
compile the program.

Even though you thought you had 
called with floats, floating-point literals 
are treated as doubles by default.

15  cout << "The average 
of 10 and 35 is: " 
<< average(10.0, 35.0) 
<< endl; 

15  cout << "The average 
of 10 and 35 is: " << 
average(10.0f, 35.0f) 
<< endl; 

// Program 13_3_ERROR

// Multiple parameter types; Error when 
trying to use floats due to double

#include <iostream>

using namespace std;

float average(float a, float b) {

 return (a + b) / 2.0;

}

int average(int a, int b) {

 return (a + b) / 2;

}

int main() {

 cout << "The average of 10 and 35 
is: " << average(10.0, 35.0) << endl; 

}

http://www.thegreatcourses.com


148Lecture 13 | Expanding What Your Functions Can Do in C++

// SETTING DEFAULT PARAMETERS

There's one more way that you can provide 
functions with the same name but different 
parameter sets: You can specify a default 
value for one or more of the parameters. If, 
when the function is called, the corresponding 
argument is left out of the call, you use the 
default parameter instead.

To do this, you just set an initializing value 
for the appropriate parameter, assigning it 
some value inside the parentheses. When it is 
done this way, that assignment is understood 
by the compiler as one to be used if the 
corresponding parameter is not provided.

Suppose you want to create a function, called 
printmultiple, to print out a string multiple 
times. Let printmultiple take in the string 
to print and the number of times to print it. 
There's nothing to return; that is, the function 
does not need to return a value to the place 
it was called from, so you'll have a void 
return type.

If someone doesn't specify how many times 
to print the string, you might choose to have 
a default number, such as 1. If so, your header 
would look something like line 7. So, there 
are 2 parameters: a string called s that you 
are taking in and an int called times (the 
number of times to print, which has a default 
value of 1).

If you call the function with both parameters—
for example, Hello and 5—you'll get the string 
Hello printed out 5 times.

On the other hand, if you call it with just a 
string parameter, such as World, then times 
has the default value, so the string is printed 
out just once.

If there are multiple default parameters, then 
arguments from the function call are assigned 
to parameters from left to right (the first 
argument is assigned to the first parameter, 
the second to the second parameter, etc.). 
You can't have just some parameter in the 
middle be assigned a default value; once one 
is assigned, everything after it must also be 
default.

Default parameters are commonly used to 
control how a function works when there's 
a normal, or common, way to do something 
set as the default but you want to let the 
programmer have the option of selecting 
some other behavior if needed.

Setting default parameters is an 
alternative to overloading a function 
by specifying different signatures.

// Program 13_5

// Using a Default Parameter

#include <iostream>

#include <string>

using namespace std;

void printmultiple(string s, int 
times = 1) {

 for (int i = 0; i < 
times; i++) {

  cout << s << endl;

 }

}

int main() {

 printmultiple("Hello", 5);

 printmultiple("World");

}

http://www.thegreatcourses.com


149Lecture 13 | Expanding What Your Functions Can Do in C++

A reference is a way of describing a particular 
variable. Normally, when you define a variable, 
it gets its own box of memory. If you do 
something to that box of memory, such as 
assign a value to it, it's not going to affect any 
other box.

With a reference, though, you don't create a 
new box of memory for the variable. Instead, 
you use an existing box of memory and say 
that the variable refers to that box of memory. 
Basically, your variable becomes another name 
for some box of memory that already exists; 
anything you do to that new variable must 
affect the original box of memory, too!

The way you specify a reference is by putting 
an ampersand (&) after the type when you 
first declare it. You then have to initialize your 
new variable to refer to some other variable. 
Program 13_7 illustrates this. 

First, you create a variable, a, that you initialize 
to a value of 1 (7).

Next, you create a variable, b, that is a 
reference to an integer. So, you write int& 
b. You have to make this a reference to 
something; you can't just leave it there. So, 

you initialize this to a (8). This means that 
b is going to refer to the exact same box of 
memory that is a. When you print out the 
values of a and b, both show up as 1.

You can assign a new value, 2, to a (10). 
When you do so, this changes the value stored 
in that box of memory. So, when you print out 
both a and b now, both show up as 2.

The same thing happens if you assign a 
new value, 3, to b (12). The box of memory 
that b refers to has its value changed to 3. 
So, printing out the values of a and b now 
indicates that both have the value 3.

Essentially, a and b are referring to the exact 
same thing.

The most common way that references are 
used is when calling functions. That's because 
you can declare any of the parameters in a 
function to be a reference. This means that the 
parameter will not be a copy of the argument 
that comes in; it'll be a reference to the 
argument that comes in. So, any changes to 
the reference parameter will be like a change 
to the original.

References allow you to share information without making needless copies.

// USING REFERENCES

The term used to describe this is 
passing by reference. This is distinguished 
from what you did previously, which is 
passing by value. When you pass by value, 
you're copying the value of the argument 
into the new box of memory set up for the 
parameter. When you pass by reference, you 
don't copy anything; you just let the parameter 
refer back to a shared version of input.

// Program 13_7

// Reference example

#include <iostream>

using namespace std;

int main() {

 int a = 1;

 int& b = a;

 cout << a << " " << b << endl;

 a = 2;

 cout << a << " " << b << endl;

 b = 3;

 cout << a << " " << b << endl;

}

http://www.thegreatcourses.com


150Lecture 13 | Expanding What Your Functions Can Do in C++

Suppose you have a savings account balance 
and you'd like to increase the balance by some 
percentage to account for earning interest.

You can create a function named increase_
percentage that will take 2 parameters: 
the value that you want to increase and the 
percentage to increase by. The key thing here 
is that you are going to modify the balance 
so that the first parameter will be a reference, 
not just a basic parameter. So, you will write 
float& value for the first parameter.

So, when the function is called, with 
arguments savings_balance and 10, the 
first argument, savings_balance, is passed 
by reference. In the function's memory, the 
parameter value just refers to the exact same 
block of memory as savings_balance from 
the main function. The second argument, 10, 
is passed by value, so a new box of memory 
named percentage is created in the function's 
memory area, and 10 is copied into there.

Thus, when you modify the variable named 
value in the function, you're actually 
modifying the same box of memory as 
savings_balance in the main function. 
After the function returns, you'll find that the 
value in savings_balance has in fact been 
changed.

Passing by reference makes it possible to 
modify a value. It also has the advantage 
of not having to go through the process of 
copying the variable.

Copying is not a big deal in most cases, but 
if the variable is something really large, such 
as an entire video file, you don't want to take 
the computational time and memory of going 
through and copying it.

The ability to not have to copy information 
needlessly is an advantage, so why wouldn't 
you always do that? Why wouldn't you always 
just pass by reference?

There are 2 main reasons:

1 One is if you know you want to modify the 

parameter in your function but don't want it 

affected back in the main program. You'd like 

the function to be as disconnected from where 

it was called as possible, so you don't want to 

needlessly tie things together that shouldn't be 

tied. Passing by value is the right solution when 

you want your function to be as much of a black 

box as possible, because you need to make a 

copy of that data regardless.
2 The other reason for passing by value is a 

little subtler: If you pass by reference, then 

the argument that you call with needs to be a 

variable. It can't be a literal—because there's no 

box of memory to refer to. If you try to pass in a 

string literal, you will get a compiler error.

Exercise

Click here to see the solution.

Suppose you have a really long string 
and want to do a search-and-replace 
for some word in the string, finding 
every occurrence of that word and 
replacing it with a different word. 
Can you come up with a header for 
a function that will modify the string 
in that way? (Don't worry about the 
body of the function.)

// Program 13_8

// Passing by Reference

#include<iostream>

using namespace std;

void increase_percentage(float& 
value, float percentage) {

 value += value * (percentage 
/ 100.0);

}

int main() {

 float savings_balance = 
1000.0;

 cout << savings_balance 
<< endl;

 increase_percentage(savings_
balance, 10);

 cout << savings_balance 
<< endl;

}

http://www.thegreatcourses.com


151Lecture 13 | Expanding What Your Functions Can Do in C++

There is a workaround that lets you pass a 
literal by reference. The trick is to add const in 
front of the reference parameter. This tells the 
compiler: "I don't need to copy this data, and 
I won't modify it. It will stay constant." This is 
called passing by const reference. Passing by 
const reference lets you avoid unnecessary 
copying and can help optimize code when 
you're dealing with large data.

Another way const can be used is when 
you have a variable that you want to assign 
a value to and you know that the value will 
never change. In that case, you can declare it 

to be a const variable when you declare and 
initialize it. You just write const in front of 
the type. Declaring a variable to be constant 
ensures that the intent of the variable—as an 
unchanging value—is maintained.

The use of pass by reference is also a way, 
in effect, of returning more than one value. 
Ordinarily, a function can only have one return 
type, but if you have multiple parameters that 
are passed by reference, you can use that 
to modify the values of each of them. In this 
way, a function can return multiple values—by 
modifying multiple arguments. 

When you're deciding when to 
overload functions, when to pass by 
value, and when to pass by reference, 
a good rule of thumb is to pass by 
value as a default, unless you have a 
good reason not to. That way, you're 
less likely to have errors or run into 
problems.

READINGS
a Stroustrup, Programming Principles and Practice Using C++, 

section 8.5.

b Lippman, Lajoie, and Moo, C++ Primer, sections 6.2, 6.4, 6.5, 
and 6.6.

Exercise Solution

Click here to go back to the exercise.

Here's what the header could look like. (Note that the 
order of parameters is up to you.)

1 // Program 13_9
2 // Passing by Reference - Incomplete program
3 #include<iostream>
4 #include<string>
5 using namespace std;
6 
7 void search_and_replace(string& main_string, string word_

to_find, string replacement) {
8  // Manipulate main_string here
9 }
10 
11 int main() {
12  string long_document;
13  // Assign something to long_document here
14  search_and_replace(long_document, "Robert", "Bob");
15 }

http://www.thegreatcourses.com


152Lecture 13 | Expanding What Your Functions Can Do in C++

// QUIZ

1 What do you call each of the following types of parameter passing? 

Assume that you call a function with argument X and the parameter in the 

function is Y.

a Y and X are exactly the same, but you're not allowed to change Y.

b Y gets assigned a copy of X, so anything done to Y does not change X.

c Y and X are exactly the same, so anything done to Y is also done to X.

2 Write a function header that would behave the same for all of the 

following calls:

 float a, b, c, d;
 a = compute_cost();
 b = compute_cost(10.0);
 c = compute_cost(10.0, 8.25);
 d = compute_cost(10.0, 8.25, "Texas");

3 What would be the output of the following program?

1 #include<iostream>
2 using namespace std;
3 
4 void A(int x) {
5  x++;
6  cout << x << endl;
7 }
8 
9 void B(int& x) {
10  x++;
11  cout << x << endl;
12 }
13 
14 int main() {
15  int x = 2;
16  A(x);
17  cout << x << endl;
18  B(x);
19  cout << x << endl; 
20 }

Click here to see the answers.

http://www.thegreatcourses.com


153Lecture 13 | Expanding What Your Functions Can Do in C++

// QUIZ ANSWERS

1 These are all different ways you can pass parameters into a function; each 

has its own advantages.

a This is pass by const reference.

b This is pass by value.

c This is pass by reference.

2 You need to use default parameters here. The function is returning a 

value that gets assigned to a floating-point variable, so you make the 

return type float. The name of the function is compute_cost. There 

are 3 parameters, and they have to be able to take default values (10.0 

for the first parameter, 8.25 for the second, and Texas for the third). So, 

the parameters need to be of type float, float, and string, and the 

defaults need to be set appropriately; the actual parameter names don't 

matter, though. Here is an example:

float compute_cost(float val1 = 10.0, float val2 = 8.25, 
string state = "Texas") 

3 3
2
3
3

Notice that the value of x is initially 2, and when passed to A, the 

parameter has the value 2, which is incremented to 3 and then output. This 

was a pass by value (so that x was copied into the parameter), so when 

you output x in the main program, its value is still 2. Next, you call function 

B, which is a pass-by-reference call. The parameter thus refers to the same 

memory location as x in the main program. So, when you increment the 

value to 3, it is printed as 3 in the function but is also changed to 3 back in 

the main program.

Click here to go back to the quiz.

http://www.thegreatcourses.com


154Lecture 14 | Systematic Debugging, Writing Exceptions

Although everyone would like their programs to run perfectly as 
soon as they're written, that's never actually the case. So, every 
programmer needs to come to terms with the fact that a lot of 
programming time will be spent dealing with errors.

14 IN THIS LECTURE:

A Systematic Approach to Debugging

Program 14_1

Program 14_2

Types and Sources of Errors

Program 14_4

Program 14_5

Using Exceptions

Program 14_6

Program 14_7

Quiz

Quiz Answers

Systematic Debugging, 
Writing Exceptions

// A SYSTEMATIC APPROACH TO DEBUGGING

To avoid frustration and failure, you should 
approach the process of debugging 
methodically, following 6 main steps:

1 isolate the error,
2 narrow in on the failure point,
3 identify the problem,
4 fix the problem,
5 retest, and

6 consider similar cases where the error you've 

fixed might reappear elsewhere in your program. 

STEP 1: ISOLATE 
The first step is to isolate an error. This 
involves writing good test cases, which 
helps make sure that the code is running as 
expected. You want to run tests until you 
either cannot come up with any tests that give 
problems or find a test that gives a repeatable 
error. It's important for the error to be 
repeatable; you want to make sure that every 
time you run the program with that test, you 
get the same incorrect result.

Debugging is a methodical process. 
It's not just a matter of randomly 
jumping through your code to find 
errors and make bugs disappear.

http://www.thegreatcourses.com


a

b

c

A common version of the test case idea is to 
set up a unit test, which is a test case run for 
a particular function. Basically, you have some 
input to the function and then some output you 
should expect to see. When you write a function, 
it's a good idea to run several unit tests to make 
sure the function is working as expected.

This program is designed to let a user enter 
some text and then it will check whether that 
text is a palindrome or not (a). It does this by 
calling a function is_palindrome (b), which 
calls a function remove_spaces to remove 
spaces from the text (c). Then, it goes over the 
first half of the characters (21), comparing them 
to the corresponding character on the other side 
(22). If they all match, then it's a palindrome; 
otherwise, it's not.

Because you're focused on the is_palindrome 
function, you can consider this a unit test of the 
is_palindrome function itself. You want to give 
the is_palindrome function an input and check 
that it's giving the right output.

For your unit test, you'll check to see if your 
function works for a very simple text string: aaa. 
That should be a palindrome, but when you 
run the program to check it, you get the wrong 
answer!

155Lecture 14 | Systematic Debugging, Writing Exceptions

// Program 14_1
// Example program to debug - contains an error!
#include <iostream>
#include <string>
using namespace std;

string remove_spaces(string s) {
 string ret = "";
 int i;
 for (i = 0; i < s.size(); i++) {
  if (s[i] != ' ') {
   ret += s[i];
  }
 }
 return ret;
}

bool is_palindrome(string s) {
 string no_spaces = remove_spaces(s);
 bool could_be_palindrome = true;
 for (int i = 0; i < no_spaces.size() / 2; i++) {
  if (no_spaces[i] != no_spaces[no_spaces.size() - i]) {   
   could_be_palindrome = false;
  }
 }
 return could_be_palindrome;
}

int main()
{
 cout << "This will tell you whether certain text is a 
palindrome.  Enter some text:" 
  << endl;
 string user_input;
 getline(cin, user_input);
 if (is_palindrome(user_input)) {
  cout << "It is a palindrome!" << endl;
 }
 else {
  cout << "It's not a palindrome." << endl;
 }
}

http://www.thegreatcourses.com


156Lecture 14 | Systematic Debugging, Writing Exceptions

STEP 2: NARROW 
Now that you have an error that you can use 
to debug your program, the next step in the 
debugging process is to hone in on where the 
failure is occurring in the code. This is where 
the debugger in Visual Studio (on a PC) or 
Xcode (on a Mac) can come in handy.

A debugger can only help you follow what's 
going on in the program; it's not going to 
solve your issues for you or even tell you 
where the error occurred.

Your goal is to find the first line of the 
program that gives a result that's incorrect. 
Usually, this will mean that some variable in 
memory has the wrong value.

If you don't have a debugger, you can always 
use output statements to print out data along 
the way.

To hone in on an error, you should start at 
a point in the program where you know 
everything is OK and one where you know 
things have gone wrong. In the worst case, 
that'll be the first and last lines of the program! 
But in many cases, you have a better idea—
often right before calling some new function 
you wrote and right after it.

Then, you'll want to gradually narrow down 
the scope of the program where the error 
could be occurring. Pick another point in the 
program, somewhere between the last-known 
OK point and the first-known bad point and 
analyze whether the variables in memory 
are correct there. If everything looks good, 
then you can move your OK point to there. 
If there's a problem at that point, then move 
your bad point to there. The goal is to narrow 
down the location of the error where things 
first go wrong as much as possible.

In this case, you know that things are good at 
the beginning of the program and that there's 
a problem at the end, so you should check a 
point in the middle.

You could do this with just print statements by 
using a print-debug approach: inserting one 
line after the remove_spaces function has 
returned in order to output the result there.

When you run the program, it appears that the 
data is correct to that point. This indicates that 
you did indeed read in the string and calling 
remove_spaces did not introduce any obvious 
errors. So, you can assume that up until that 
point, things are good.

You could likewise check the value that you 
are going to return right before returning. If 
you add another output line there, printing out 
the value you will return right before the return 
statement, you can check if the problem 
is before or after the return from the is_
palindrome function.

Sure enough, when you run the program, it's 
returning 0, or false, which is not correct. So, 
you know that things seem good before the 
for loop and are wrong afterward. You need 
to hone in further.

19  string no_spaces = 
remove_spaces(s);

20  cout << "String with no 
spaces is:" << no_spaces 
<< endl;

21  bool could_be_palindrome 
= true;

26  cout << "About to return:" 
<< could_be_palindrome<<endl

27  return could_be_
palindrome;

http://www.thegreatcourses.com


157Lecture 14 | Systematic Debugging, Writing Exceptions

In a debugger, you can set a breakpoint at the beginning of the loop 
that will make sure you stop there. When you run the debugger 
to there, looking at variables, could_be_palindrome is true, as it 
should be.

Stepping over the first line, you can check and see that i has the 
value 0, as expected. So, things seem good so far.

Stepping over one more line, you have ended up inside the if 
statement and are about to set could_be_palindrome to false. But 
that's not right! You should not be getting to this point for this input.

This means that the error had to be on the previous line—the one 
where you are comparing no_spaces[i] with no_spaces[no_
spaces.size()-i]. You can examine those values: i is 0, as 
expected, and no_spaces.size()-i is 3. But that's not right. You 
want to be looking at the last element of the string, but that should 
be element 2, not element 3.

STEP 3: IDENTIFY 
Now that you know where the error is occurring, the third step is to 
identify the source of the error. The source is not just the line of code 
where things went wrong; it's what caused that line of code to be 
wrong. Was it a simple typo, or is it an error in the fundamental logic 
of the program?

The key point is that you want to understand what caused this error 
before you try to fix it. If it was a basic error like mistyping, then it'll 
be very simple to fix. But if it's a logic error in the program, you'll 
want to make sure you really understand what went wrong and why. 
There's no shortcut around this part of the debugging process.

In the palindrome program, for a string of 3 characters, you were 
trying to compare character 0 to character 3. The problem is that 
the last character would not start at the size of the string; it's actually 
the size minus 1, so you need to compare character 0 to character 2. 
So, in this case, the error was in coming up with the wrong formula 
to use for comparison.

 
STEP 4: FIX 
Once you know the problem, the next step is to fix the bug. This 
could be simple—maybe just spelling a variable name correctly or 
changing a character.

It could involve rewriting a line of code. Or it could be that you were 
so wrong in your approach that the best fix is to throw out the whole 
thing and start over again!

Here, the fix for the bug is pretty simple: You just subtract 1 from 
the element number for the end of the string. So, when i is 0, you 
should be comparing to size()-1. When i is 1, you'll be comparing 
to size()-2, etc.

22 if (no_spaces[i] != no_spaces[no_spaces.size()-1-i]) {

http://www.thegreatcourses.com


158Lecture 14 | Systematic Debugging, Writing Exceptions

STEP 5: RETEST 
Once an error is fixed, you need to retest 
everything. Your goal is not just to show that 
the fix you made fixed the one problem you had 
isolated and identified. You want to make sure that 
you didn't break anything else in the meantime. If 
you've saved all your tests, now is the time to rerun 
them and make sure you still get correct results for 
everything that was previously correct—plus for the 
test you just fixed!

When you test the palindrome program on aaa 
now, it returns that it is a palindrome. You could 
check other tests: abc is not a palindrome; bob is a 
palindrome. The program seems to be working now.

 
STEP 6: CONSIDER 
Before your debugging task is done, there's one 
final step: You should think about whether anywhere 
else in the code is likely to have a similar error.

Errors tend to multiply when there are different 
versions of the same calculation. Sometimes, people 
copy and paste code from one area to another and 
thereby duplicate any errors. Other times, if your 
thought process was off, you might have made the 
same conceptual error in other parts of the code.

The key is to spend time thinking about whether the 
fix you made would apply somewhere else, too. If 
so, fix and test that other part of your code as well.

For the palindrome program, you should think: 
"Were there any other places where I was assuming 
the string went all the way to size rather than size 
minus 1?" In this case, the answer is no, so you're 
done debugging.

// Program 14_2
// Example program to debug - fixed!
#include <iostream>
#include <string>
using namespace std;

string remove_spaces(string s) {
 string ret = "";
 int i;
 for (i = 0; i < s.size(); i++) {
  if (s[i] != ' ') {
   ret += s[i];
  }
 }
 return ret;
}

bool is_palindrome(string s) {
 string no_spaces = remove_spaces(s);
 bool could_be_palindrome = true;
 for (int i = 0; i < no_spaces.size() / 2; i++) {
  if (no_spaces[i] != no_spaces[no_spaces.size() - 1 - i]) {
   could_be_palindrome = false;
  }
 }
 return could_be_palindrome;
}

int main()
{
 cout << "This will tell you whether certain text is a 
palindrome.  Enter some text:" 
  << endl;
 string user_input;
 getline(cin, user_input);
 if (is_palindrome(user_input)) {
  cout << "It is a palindrome!" << endl;
 }
 else {
  cout << "It's not a palindrome." << endl;
 }
}

http://www.thegreatcourses.com


159Lecture 14 | Systematic Debugging, Writing Exceptions

// TYPES AND SOURCES OF ERRORS

The errors that you encounter tend to fall into 
one of 3 types: syntax errors, logic errors, and 
runtime errors.

1 A syntax error occurs where you've written 

something that is not accurate code. These are 

usually the easiest to find and fix, because the 

compiler will identify that you have a mistake in 

your code and will usually give you a particular 

line of code where it detected the error.
2 A logic error occurs when there was something 

wrong with the thought process that went into 

the code, and that gets reflected in a mistake. 
These are some of the toughest errors to find.

3 A runtime error is due to unexpected 

circumstances. This is where adding exceptions 

to your program can be a big help.

Often, the source of the error could be due 
to circumstances outside the programmer's 
direct control. Perhaps you asked a user to 
enter a number and he or she typed a word 
instead of a number. The program will either 
give a wrong answer or just crash.

To avoid this kind of error, you could make a 
much more complicated process for reading in 
a string and then checking to see if the string 
is a positive integer—and if so, convert it to an 
integer, and so on. But doing all of this would 
be very painful!

Programming is full of situations, besides a 
user entering data of the wrong type, where 
you might run into results that you don't 
expect.

One common situation is with files: You might 
try to open a file for reading but the file just 
isn't there. Maybe the name got mistyped or 
the file is in a different directory. For whatever 
reason, it's not where you expected, and you 
can't open it.

For example, Program 14_4 asks a user for a 
file name, reads the first element (an integer) 
from the file, and prints it out. If you run this 
program and type in the name of a non-
existent file, you'll probably get some sort of 
nonsense printed out.  Since the file did not 
exist, it could not be opened to read from, and 
so whatever should have been read and then 
printed out will be junk.

Trying to access a vector is another situation 
where what you expect might not be what you 
get. For example, maybe you read in a week's 
data but a user included only the workweek 
and not the weekend. What should happen if 
you tried to access the 6th element?

Program 14_5 is an example: The hours_
worked vector has 5 elements, giving the 
number of hours worked each day. The loop, 
however, tries to access 7 elements.

// Program 14_5
// Exception example - vector 
past end of range
#include <iostream>
#include <vector>
using namespace std;

int main() {
 vector<float> hours_worked = 
{ 7.5, 8.5, 10.0, 7.0, 7.0 };
 for (int i = 0; i < 7; i++) {
  cout << "On day " << i << 
", " << hours_worked.at(i) << " 
hours were worked." 
   << endl;
 }
}

// Program 14_4
// Exception example - reading a 
nonexistent file
#include <iostream>
#include <fstream>
#include <string>
using namespace std;

int main() {
 fstream infile;
 string filename;
 cout << "What is the file 
name? ";
 cin >> filename;
 infile.open(filename, 
fstream::in);

 int a;
 infile >> a;
 cout << "Read in: " << a 
<< endl;
}

http://www.thegreatcourses.com


160Lecture 14 | Systematic Debugging, Writing Exceptions

// USING EXCEPTIONS

The solution to dealing with unexpected, 
"exceptional" cases is through the use of 
exceptions. Here's how they work.

First, you have a function called from 
somewhere within a program. This call should 
occur within what's referred to as a try block.

Somewhere within the function that is called, 
you encounter an error. This is where you 
realize that some exceptional situation has 
occurred—maybe you've tried to access past 
the end of a vector or you had text entered 
instead of a number.

That function then generates an exception, 
which is basically a special note that 
something has gone wrong. In C++, the term 
for this idea is throwing an exception. In other 
programming languages, you might hear this 
called raising an exception.

When you throw an exception, the function 
immediately returns. The exception is being 
"thrown" back to the function that called the 
routine.

Back in the calling function, the exception 
is then caught. There is separate code that 
is executed to handle the exception that 
occurred.

If you're going to deal with exceptions, you 
need 2 parts of code. First, you have a try 
block, which consists of the keyword try 
followed by curly braces. Whatever code is 
inside the curly braces is something that you 
will "try" to execute.

If the code executes and no exception is 
thrown within that code, then you go on to 
whatever additional code follows. On the other 
hand, there could have been an exception 
raised.

Immediately following the try block will be 
one or more catch blocks—used to "catch" 
any exception thrown when trying to execute 
the code in the try block, including in any 
functions that were called from there. The 
catch block will take in a parameter, which is 
going to be the exception that is returned.

In many cases, you're going to be throwing 
your own exceptions. But there are a few 
places in standard C++ where exceptions are 
already thrown.

Let's see how to handle exceptions in 2 cases.

The fstream library supports the ability to 
throw an exception in the case of trying to 
read from a nonexistent file.

There is a special command that has to be run 
for the fstream first: the member function 
exceptions, which basically activates the 
ability for fstreams to throw exceptions. The 
exceptions function takes in as input the 
exceptions that are being activated.

try {
 // Code to try
}
catch (exception& e) {
 // Code to handle exceptions
}
// Additional code

http://www.thegreatcourses.com


d

e

161Lecture 14 | Systematic Debugging, Writing Exceptions

In this case, the exception you would care about is 
a predefined exception called failbit: If the file 
does not open correctly, then a failbit exception 
is thrown. So, for this code, because the fstream 
is named infile, the command you'll write is 
infile.exceptions(fstream::failbit) (9).

Then, you have a try block (d), where the code 
you want to try to run is put inside the curly braces. 
In this case, the code you're trying is opening 
the file.

Following that is a catch block (e), which takes in 
one parameter—a reference to an exception, given 
the name category in this case.

Inside the catch block is the code you want to run 
if the exception is caught. In this case, you print out 
a message that there was an error opening the file. 
Then, you return a nonzero value. Because you're in 
the main function, return means that the program 
ends, and because it ended with a nonzero value, it 
indicates that there was an error along the way.

If you run this code and the file does not exist, then 
the open function you tried to call will generate 
an exception. And when this exception is caught, 
you print out Error opening file, and the 
program ends.

If there was not an exception, then you would have 
just skipped over the catch block and gone on to 
the remaining code in the main function.

// Program 14_6

// Exception example - reading a nonexistent file, now with 
try/catch

#include <iostream>

#include <fstream>

using namespace std;

int main() {

 fstream infile;

 infile.exceptions(fstream::failbit);

 try {

  infile.open("something.dat", fstream::in);

 }

 catch (exception& category) {

  cout << "Error opening file" << endl;

  return 1;

 }

 int a;

 infile >> a;

 cout << "Read in: " << a << endl;

}

http://www.thegreatcourses.com


f

162Lecture 14 | Systematic Debugging, Writing Exceptions

When you're writing your own 
programs, you throw an exception 
simply by calling the throw 
command. You need to throw 
exceptions, so the syntax will be 
throw exception(). That creates an 
exception and throws it back to the 
original function.

Imagine you have some function, 
named process_boxes (7), that 
takes in an integer parameter. It 
makes no sense if that function 
is called with no boxes, so in that 
case, you might want to throw an 
exception.

Inside the function, you perform a 
check: If the number of boxes is less 
than 1, then you have an invalid input 
and you'll throw an exception (8).

To throw the exception, you just 
have throw exception() (9). An 
alternative is that you could create an 
exception variable, exception bad_
input, and then you could throw that 
exception, throw bad_input. 

If you approach debugging 
steadily and systematically, 
you will find your errors.  

Either way, you're creating an 
exception and then throwing it. In 
most circumstances, it's easier to just 
throw the exception in one line of 
code that both creates the exception 
and throws it.

If you didn't throw an exception, then 
the function would continue to do 
whatever else it needed to.

Back in the calling function, you can 
try calling the routine with an invalid 
parameter and catch the exception 
being thrown back (f), which results 
in printing a message that there was 
an exception.

Note that you had to #include 
stdexcept here. You didn't do this 
in earlier examples because including 
vector or fstream automatically 
included basic exceptions as well. But 
if you don't use another library that is 
using exceptions already, you need to 
#include it yourself.

// Program 14_7

// Throwing exceptions - throwing directly

#include <iostream>

#include <stdexcept>

using namespace std;

int process_boxes(int num_boxes) {

 if (num_boxes < 1) {

  throw exception();

 }

 // Do other stuff here

 return 1;

}

int main() {

 try {

  process_boxes(-1);

 }

 catch (exception& e) {

  cout << "Had an exception!" << endl;

 }

}

9  throw exception();

9  exception bad_input;

10  throw bad_input;

http://www.thegreatcourses.com


163Lecture 14 | Systematic Debugging, Writing Exceptions

// QUIZ

1 Put the following steps of the debugging process in order.

a Retest.

b Identify the source of the failure.

c Isolate a repeatable error.

d Fix the error at its source.

e Consider similar cases.

f Narrow in on the location of failure.

2 Imagine that you need to make a function call to a function named draw_
square, which takes no parameters and returns nothing. But it may 

generate an exception. Write the code you would use to call the function 

but, if there is an exception, to print Can't draw square.

3 Write a function named tester that takes in 2 integer parameters and 

throws an exception if either one is negative or otherwise returns the sum.

READINGS
a Stroustrup, Programming Principles and Practice Using C++, chap. 5.

b Lippman, Lajoie, and Moo, C++ Primer, sections 5.6 and 18.1.

c Ousterhout, A Philosophy of Software Design, chap. 10.

Using exceptions can help make your code 
much more robust; that is, your code is able 
to deal with a wider range of exceptional 
circumstances cleanly. Exactly how you deal 
with those circumstances can vary from case 
to case.

 » You could just close the program, maybe after 

printing some error messages.

 » You could prompt the user for another input, if 
the source of the problem was user error.

 » You could set a default value that gets used if a 

given value is invalid. 

Rather than just exception, there 
are specific exception types named 
logic_error, runtime_error, 
range_error, and so on. You can 
have separate catch blocks for each 
of the different types of exceptions. 
To do that, you just define the 
parameter in the parentheses after 
catch as having the more specific 
type of exception, rather than just the 
general exception.

Click here to see the answers.

http://www.thegreatcourses.com


164Lecture 14 | Systematic Debugging, Writing Exceptions

// QUIZ ANSWERS

1 c Isolate a repeatable error. You first need to have a definite error that 

you can reliably check.

f Narrow in on the location of failure. Find the line where you can 

identify that things go wrong. Remember that the location of failure is 

where the bug manifests but is not necessarily where the actual bug 

in the code occurs.

b Identify the source of the failure. Based on the location the error 

occurs, try to determine what the actual source of the error is. This 

usually requires logic, deduction, and inference.

d Fix the error at its source. When you know the error, you can fix it at 

its source. 

a Retest. Once the error has been fixed, you need to test again to make 

sure everything still works—to ensure you both fixed the bug and did 

not create a new error.

e Consider similar cases. Because an error in one location in the 

program might have been repeated elsewhere, before moving on, 

consider whether the error might have been made in other locations 

as well.

2 The code will need to use try-catch blocks. The function call should be 

inside of the try block, and the catch block will be used to catch the 

exception, with the output line inside that block.

1  try {
2   draw_square();
3  }
4  catch (exception& e) {
5   cout << "Can't draw square" << endl;
6  }

3 Here is a function. You need to have a conditional to check whether either 

parameter is negative and, if so, throw an exception. Otherwise, just return 

the sum.

1 int tester(int a, int b) {
2  if ((a<0) || (b<0)) {
3   throw exception();
4  }
5  return a+b;
6 }

Click here to go back to the quiz.

http://www.thegreatcourses.com


165Lecture 15 | Functions in Top-Down and Bottom-Up Design

Functions let you write much bigger and more complex programs 
than would otherwise be possible, and the power of functions is even 
greater when integrated with a deliberate approach to software design. 
Functions integrate equally well with top-down and bottom-up design 
approaches.

15 IN THIS LECTURE:

Top-Down Design

Program 15_1_1

Program 15_1_2

Program 15_1_3

Bottom-Up Design

Program 15_2_1

Program 15_2_3

Building a Library

Program 15_3

Quiz

Quiz Answers

Functions in Top-Down 
and Bottom-Up Design

// TOP-DOWN DESIGN

With top-down design, you take a larger 
problem and treat it as a set of smaller 
problems without worrying as much about 
how each of the smaller problems impacts 
the other smaller problems. Your job with any 
one task is to either break it into even simpler 
subtasks or implement it directly.

With functions, you have a very similar 
motivation. A function is a way of conceptually 
separating one set of functionality from 
everything outside. This is very similar to the 
way you treat each of the subtasks in top-
down design.

So, if you consider the tree structure you 
create in top-down design, each of the nodes 
can become, in effect, a function of its own. 
Instead of merely turning the hierarchical tree 
into a series of comments, you can turn it into 
a collection of functions.

Remember that because you must have 
a function declaration before you call the 
function, this means that the functions listed 
earlier in the code will be those far from 
the root of the tree. The main function will 
correspond to the root of the tree and will 
come last.

Let's see what this might look like by designing 
a program to play a game of Connect 4, which 
is played by 2 players, each with a different 
color piece, usually red or black. Players take 
turns dropping their pieces down columns of 
the board: When a piece is dropped, it travels 
as far down as it can, until it is either at the 
bottom or on top of another piece. The goal is 
to get 4 pieces in a row vertically, horizontally, 
or diagonally.

http://www.thegreatcourses.com


166Lecture 15 | Functions in Top-Down and Bottom-Up Design

There are 3 main problems that a program 
created to play this game needs to solve. You 
need to

1 set up the board,
2 repeatedly take turns, and

3 determine and display the winner or note that 

it's a tie.

Next, you can break these problems into 
smaller tasks.

1 Initializing the game will involve getting the 

board size for the game and then initializing 

that board to be empty. Traditional Connect 4 is 

played on a board with 7 columns and 6 rows, 
but basically a board of any size could be used. 
You can get the board size from the user.

2 For each turn, you want to display the current 

board for the players, get the player's next 

move, make that move, and then check to 

see if someone won. These steps will happen 

repeatedly through the game

3 For declaring the winner, you want to print out 

the board one more time and then print out 

who the winner is.

While most of these elements are now about 
as simple as they can be, checking for a 
winner can be broken down further. You'll 
need to check for various win conditions: a 
vertical win, where someone has 4 consecutive 
pieces in the same column; a horizonal win, 
where someone has 4 consecutive pieces in 
the same row; and an increasing or decreasing 
diagonal, where a player has 4 consecutive 
pieces in an increasing or decreasing diagonal. 
If none of these are the case, then you should 
check to see if the board is full, in which case 
it's a tie game.

Notice that the process for checking for a 
winner is basically the same as the process 
for printing a winner. You have to make all the 
same checks in both cases. This is one of the 
places where you can take advantage of the 
fact that functions allow you to use the same 
code for multiple calls. You can write one set 
of functions that should be able to be used in 
both of the other functions.

You also have a display or print board node in 
2 different places—both as something you do 
at the beginning of each turn and something 
you do before printing the winner. Again, 
you can write one function that gets called 
from 2 different locations, thus saving you 
coding time.

After you've broken down the game into a 
series of subtasks, you're going to turn each 
of the nodes from your top-down design 
into a function in code, with main as the root 

node. Initially, you'll just create these functions, 
not worrying about the return types or the 
parameters for each; you'll go back to adjust 
that as you fill in the functions.

For example, you can create functions for 
the first branch of the top-down hierarchy. 
You'll have one function to initialize the game. 
Under that are 2 more functions: one to get 
the board size and one to initialize the board. 
Because the function to initialize the game is 
higher in the hierarchy and will need to call the 
other 2 functions, it should come last.

You can do the same for all the branches from 
the beginning, or you can begin filling in these 
functions.

// Program 15_1_1
// Connect 4 Program - stage 1
#include <iostream>
#include <vector>
using namespace std;

void get_board_size() {
 /* Get size of board from 
user */
}

void initialize_board() {
 /* Initialize the board 
itself, to all empty squares */
}

void initialize_game() {
 /* Initialize the entire 
game */
}

int main() {
}

http://www.thegreatcourses.com


167Lecture 15 | Functions in Top-Down and Bottom-Up Design

STUBS AND SCAFFOLDS

Notice that not all of the functions 
you intended to write had code. 
This approach—building a function 
that doesn't actually do anything—is 
somewhat common when developing 
programs. You might know that a 
program will need this function and 
might need to call the function from 
the code you're working on, but you 
haven't actually written that other 
function yet. A function that can be 
called and return some value of the 
correct type is called a stub.

Likewise, you sometimes need some 
other data or operations to be 
performed before you call a function, 
but you don't necessarily want to 
write all the code needed before 
that function you're working on is 
called. In this case, you can create a 
scaffold, which gets things set up so 
that a function you care about can be 
called and tested.

Let's take the first function, get_board_size. 
Basically, you need to ask the user what size 
board to use and then return that size. The 
size will actually be 2 numbers: a number of 
rows and a number of columns. Because you 
need to return 2 values, you'll use a pass-by-
reference approach.

The code for the function itself is very 
straightforward: You just output a few 
prompts and read in the number of columns 

and rows to use (a). These will get returned 
to the calling program using the pass by 
reference (b).

Remember that whenever you write a section 
of code, you should test it to make sure it's 
stable before moving on. When you finish 
a function, you want to run unit tests on it, 
testing that it works as it's supposed to. So, 
you just set up a call to the function in the 
main program and output what it returns (c). 
When you do this, you see that it's all working.

b

a

c

// Program 15_1_2
// Connect 4 Program - stage 2
#include <iostream>
#include <vector>
using namespace std;

void get_board_size(int& columns, int& rows) {
 /* Get size of board from user */
 cout << "How many columns should the board have? ";
 cin >> columns;
 cout << "How many rows should the board have? ";
 cin >> rows;
}

void initialize_board() {
 /* Initialize the board itself, to all empty squares */
}

void initialize_game() {
 /* Initialize the entire game */
}

int main() {
 int a, b;
 get_board_size(a, b);
 cout << "Returned " << a << " columns and " << b << " rows." << endl;
}

http://www.thegreatcourses.com


d

e

168Lecture 15 | Functions in Top-Down and Bottom-Up Design

Now you can continue to fill 
in additional functions. For 
example, you can fill in the 
initialize_board function, 
which will need to take in the 
number of rows and columns 
and return a board. In this case, 
the board is going to be a 
vector of vectors. There will be 
one vector for each column and 
thus a vector of each of those. 
Each element of the board will 
be a 0 to indicate that the spot 
is empty (d).

Notice that the initialize_
game function just calls the 2 
other functions you created. 
It calls get_board_size to 
get the numbers of rows and 
columns and then initialize_
board to actually create the 
empty board (e).

If you had wanted to do this 
in a different order—that is, 
write the initialize_game 
function first—then you'd have 

had to make stub functions 
for the get_board_size and 
initialize_board functions.

And continuing from there, 
you can fill in all the other 
functions corresponding to 
each node in the hierarchy 
that you created in your top-
down design. You'd want to 
develop incrementally—to add 
one function's code and test it 
thoroughly before going on to 
write the next function.

The entire program is about 
200 lines long—but those 
200 lines are spread over a 
bunch of different functions. 
No single function is too 
large, and each one should be 
understandable on its own.

Spend some time looking at 
this code and seeing how it 
reflects the top-down design 
of the outlined program.

Top-down design combines very easily with function 
definitions to make what would otherwise be a 
challenging problem much more tractable.

// Program 15_1_3
// Connect 4 Program - stage 3
#include <iostream>
#include <vector>
using namespace std;

void get_board_size(int& columns, int& rows) {
 /* Get size of board from user */
 cout << "How many columns should the board have? ";
 cin >> columns;
 cout << "How many rows should the board have? ";
 cin >> rows;
}

vector<vector<int> > initialize_board(int columns, int rows) {
 /* Initialize the board itself, to all empty squares */
 vector<int> column(rows, 0);
 vector<vector<int> > board(columns, column);
 return board;
}

vector<vector<int> > initialize_game() {
 /* Initialize the entire game */
 int c, r;
 get_board_size(c, r);
 return initialize_board(c, r);
}

int main() {
 vector<vector<int> > board;
 board = initialize_game();
}

To view the entire program, go to TheGreatCourses.com/CPlusPlus. 

http://www.thegreatcourses.com
http://TheGreatCourses.com/CPlusPlus


f

g

h

169Lecture 15 | Functions in Top-Down and Bottom-Up Design

// BOTTOM-UP DESIGN

The idea of bottom-up design is to take 
existing things you know how to do 
and combine them to do something 
new. Then, you could use that to do 
something else, and so on. You work up 
the hierarchy, using individual functions as 
building blocks.

In this simple example that you might use 
in a word processor, you have a function, 
pos_first, that lets you find the first 
occurrence of some word in a string (f). 
And you have another function, replace_
string, that lets you replace one section 
of a string with a different string (g). You 
can look at these functions and realize 
that you can use them to replace the first 
occurrence of one word with another 
word. So, you'll create a new function, 
search_and_replace, that will replace 
one string with another inside of that 
larger string (h).

// Program 15_2_1
// Example of bottom-up program - string processing (incomplete) - 
Stage 1
#include <iostream>
#include <string>
using namespace std;

int pos_first(string& string_to_find, string& string_to_search) {
 /* Returns the first position of string_to_find in string_to_search, 
 or -1 if it is not in there */
 // Code Here
}

void replace_string(string& string_to_modify, int start_pos, int end_pos, 
 string& string_to_insert) {
 /* Inserts string_to_insert into string_to_modify, replacing anything 
 in positions start_pos to just BEFORE end_pos */
 // Code Here
}

bool search_and_replace(string& string_to_modify, string& old_string, 
 string& new_string) {
 /* Replaces first occurrence of old_string with new_string and returns
 true, or returns false if it did not find old_string */

}

int main()
{
 // Code Here
}

http://www.thegreatcourses.com


i
j

k

170Lecture 15 | Functions in Top-Down and Bottom-Up Design

How might you fill in the code for search_and_
replace based on what you have?

Here's how that function might be written. You 
can use the pos_first function to find the first 
position of the string you are searching for (24). 
If it's not found, you return false (i); otherwise, 
you identify where that string would end in the 
original string (28). Finally, you call replace_
string to replace the string and return true (j).

And you can build up from there to create 
another level. You can combine the function you 
just had with a loop, which will let you replace 
every occurrence of one word in a string with 
a different one. You can create a new function, 
building up from the function you just created, 
that just repeatedly loops over the previously 
defined function until it returns false—that is, until 
it can't find the string to search for in the longer 
string (k).

Bottom-up design is a great way to add features 
to a piece of software. When you have a product 
that can already do one thing and then have some 
new idea that integrates well with it, you then 
can end up creating a new software product that 
incorporates an additional feature.

Bottom-up designs tend to focus on what is 
possible with what you have, rather than the top-
down philosophy of how a particular problem is 
solved. As a result, bottom-up implementations 
tend to be useful in a wider range of applications. 
This makes the bottom-up method a good way of 
developing a library of related functions—a bunch 
of functions that you might use across a range of 
domains.

// Program 15_2_3
// Example of bottom-up program - string processing (incomplete) - Stage 3
#include <iostream>
#include <string>
using namespace std;

int pos_first(string& string_to_find, string& string_to_search) {
 /* Returns the first position of string_to_find in string_to_search, 
 or -1 if it is not in there */
 // Code Here
}

void replace_string(string& string_to_modify, int start_pos, int end_pos, 
 string& string_to_insert) {
 /* Inserts string_to_insert into string_to_modify, replacing anything 
 in positions start_pos to just BEFORE end_pos */
 // Code Here
}

bool search_and_replace(string& string_to_modify, string& old_string, 
 string& new_string) {
 /* Replaces first occurrence of old_string with new_string and returns 
 true, or returns false if it did not find old_string */
 int start_position = pos_first(old_string, string_to_modify);
 if (start_position == -1) {
  return false;
 }
 int end_position = start_position + old_string.size();
 replace_string(string_to_modify, start_position, end_position, new_string);
 return true;
}

void search_and_replace_all(string& string_to_modify, string& old_string, 
 string& new_string) {
 /* Replaces every occurrence of old_string with new_string and returns 
 true, or returns false if it did not find old_string */
 while (search_and_replace(string_to_modify, old_string, new_string)) {}
}

int main()
{
 // Code Here

}

http://www.thegreatcourses.com


l

m

171Lecture 15 | Functions in Top-Down and Bottom-Up Design

// BUILDING A LIBRARY

If you're going to have a library, you're 
going to want a namespace—the name and 
double colon that you have to put in front of 
certain commands—to help you separate the 
functions in your library from others.

You should be very familiar with the using 
namespace std that you've been putting at 
the beginning of every program, enabling you 
to use commands in the standard namespace 
without writing std:: in front of everything.

Namespaces are a way of helping you 
distinguish one library's functions from 
another's. That way, if one library has a 
function named get_data, then another 
library can also have a function named get_
data. They can be in different namespaces, 
and the 2 functions can remain distinct.

You can also create your own namespaces. To 
do this, you just write the keyword namespace 
and then the name you want to use for your 
namespace; then, in curly braces, you include 
all the function declarations that will be part of 
that namespace. 

For example, in Program 15_3, you have a 
namespace named english (l). Inside the 
curly braces, you have a function that is of 
type void named greeting (m). This function 
is being defined as part of the english 
namespace.

In the main function, you can call the greeting 
function by writing english::greeting() (14). 
That means you are calling the function named 
greeting within the english namespace. 
When that call is made, Hello! is printed out. 

Just like you have libraries such as iostream 
that provide useful functions, you can create 
your own libraries to use in a similar way. 
When you create your own library, you will 
want to put all of the new functions you 
create in a separate namespace to prevent 
any possible overlap in the naming of different 
functions.

When you have separate libraries and as you 
start wanting to write really large programs—
the types that are built by teams of people 
or by one person working for a long time—
you can begin to make use of a feature called 
separate compilation.

Suppose you want to create a library of 
functions. The common practice in C and C++ 
is to break the code for these functions into 2 
separate files: a header file and a source file. 
Header files usually have a .h or sometimes a 
.hpp file extension, while source files have a 
.cpp designation.

The header file will contain the namespace, 
any variables to be defined in that library or 
namespace, and the function declarations—
which are just the header part of the function, 
not including the curly braces.

The declaration is a way of saying "there 
will be a function with this signature" but 
not actually saying how that function is 
implemented. The actual implementation is 
called the definition.

Up until this point, you've been putting the 
definition with the declaration, as is commonly 
done when everything is in one file. But 
the header-like declaration and the body-
like definition can actually be split up. If you 
want to try this, you'll probably need to use 
an IDE like Visual Studio or Xcode rather 
than an online browser-based compiler. (See 
page 172 for instructions on how to create 
separate source and header files in your IDE.)

// Program 15_3
// Namespace example
#include <iostream>
using namespace std;

namespace english {
 void greeting() {
  cout << "Hello!" << endl;
 }
}

int main()
{
 english::greeting();
}

http://www.thegreatcourses.com


172Lecture 15 | Functions in Top-Down and Bottom-Up Design

HOW TO CREATE SEPARATE SOURCE 
AND HEADER FILES IN YOUR IDE

In Visual Studio, the separate files you create are 
not automatically put in your project, so you will 
have to add files to the project when you're ready 
to compile them. To add your separate files to the 
project:

 » Save the files.

 » Go to the project window and select "add" and 
"existing item".

 » Add all 3 files to the project:

 »  the source file that contains main

 »  the header file that contains the function header

 »  the source file that contains the function definition

 » Then, you can build the project: run it.

Xcode automates putting the files in the project.

 » Start with the main.cpp file, with main 
automatically appearing.

 » Go to the File menu and create a Header File.

 » Save it as .h.

 » Then save it as a C++ file, .cpp.

 » If you create the .cpp source file first, Xcode will 
give you the option of also creating the header file 
automatically.

 » Build and Run the program.

When designing your program, using 
pseudocode to lay out your functions, 
look at all of them and search for 
places where you might want to 
reuse the code. Or a file might seem 
to have too many ideas in one place. 
Both are good times to consider 
breaking functions into separate files.

There are many reasons why separate 
compilation is useful, particularly for 
larger programming tasks.

 » It makes it easier to reuse files in 

other programs; you write the code 

once and then just #include it in other 

programs.

 » Dividing functions across files helps 

ensure that no single file is too large 

and that everything in one file is 

closely related.

 » By separately compiling files, only the 

files that change are ever recompiled. 
On large projects, that can greatly 

improve productivity.

In fact, you could separately compile 
every function you write. But for 
beginners, this makes code a little 
harder to follow, and you wouldn't 
be able to execute such code from 
the browser-based development 
environment. The rule of thumb is to 
consider separate compilation when 
you might reuse code or to simplify 
your files. 

READINGS
a Stroustrup, Programming Principles and Practice Using C++, section 8.7 (for 

namespaces).

b Lippman, Lajoie, and Moo, C++ Primer, section 18.2 (for namespaces).

c Ousterhout, A Philosophy of Software Design, chap. 4 (describing function 
design) and chap. 5 (describing information hiding).

d See references from lecture 11:  
Problem Solving and Program Design in C (8th ed.) by Jeri R. Hanly and 
Elliot B. Koffman and Problem Solving, Abstraction, and Design Using C++ 
(6th ed.) by Frank L. Friedman and Elliot B. Koffman.

http://www.thegreatcourses.com


173Lecture 15 | Functions in Top-Down and Bottom-Up Design

// QUIZ

1 Match the idea to its name:

a top-down

b bottom-up

c separate compilation

d stub

e namespace

f scaffold

1 a way of building a program by 

combining existing, simpler parts

2 a way of writing a minimal 

function so that it can be called 

when testing some other code

3 a way of setting up code so that a 

particular function can be tested

4 a way of grouping functions and 

variables with a common purpose

5 a way of dividing a program into 

multiple files

6 a way of dividing a problem into 

simpler subproblems

2 Imagine you have the following program and want to break it up into 

several files, which will be compiled separately. Specifically, you would like 

to have: a library header file, a library implementation file, and a main 

file. Which parts of the code would end up in each of those files?

1 #include <iostream>
2 using namespace std;
3 
4 bool update_balance(float& balance, float payment, 

float interest) {
5  balance -= payment;
6  if (balance <= 0) {
7   return true;
8  }
9  balance *= (1.0+interest/100.0);
10  return false;
11 } 
12 
13 int main()
14 {
15  float account_balance=1000.0;
16  float payment = 50.0;
17  float interest_rate = 3.5;
18  int numpayments = 1;
19  while(!update_balance(account_

balance,payment,interest_rate)) {
20   numpayments++;
21   payment += 10.0;
22  }
23  cout << "It takes " << numpayments << " 

increasing payments to pay the balance in the 
account." << endl;

24 }

Click here to see the answers.

http://www.thegreatcourses.com


174Lecture 15 | Functions in Top-Down and Bottom-Up Design

// QUIZ ANSWERS

1 a 6

b 1

c 5

d 2

e 4

f 3

2 Separate compilation means that functions can be placed in separate files that are compiled separately. In this case, that means that 

there will be the following:

 » a header file, containing just the function header:

bool update_balance(float& balance, float payment, float interest)

 » an implementation file, containing the function definition:

bool update_balance(float& balance, float payment, float interest) {
 balance -= payment;
 if (balance <= 0) {
  return true;
 }
 balance *= (1.0+interest/100.0);
 return false;
} 

 » a main file that would include the main program (it must also #include the library header file):

int main()
{
 float account_balance=1000.0;
 float payment = 50.0;
 float interest_rate = 3.5;
 int numpayments = 1;
 while(!update_balance(account_balance,payment,interest_rate)) {
  numpayments++;
  payment += 10.0;
 }
 cout << "It takes " << numpayments << " increasing payments to pay the balance in the account." << endl;
}

Click here to go back to the quiz.

http://www.thegreatcourses.com


175Lecture 16 | Objects and Classes: Encapsulation in C++

Up until this point, the basic style of programming you've been learning 
is one you could have been doing in C, even though you've seen 
several C++-specific features that make things better. Called procedural 
programming, this style relies on functions, or procedures, to organize 
the computation. From now on, you'll still need everything you used for 
procedural programming, but now you're ready to learn one of the key 
advances in C++: object-oriented programming.

16 IN THIS LECTURE:

Object-Oriented Programming

Program 16_1

Creating Classes

Sorting Data in Classes

Program 16_3_a

Program 16_3_b

Program 16_4

Program 16_5

Program 16_6

Public versus Private

Program 16_9_ERROR

Quiz

Quiz Answers

Objects and Classes: 
Encapsulation in C++

// OBJECT-ORIENTED PROGRAMMING

When you use object-oriented programming, your development is 
centered around the creation of what are known as classes, which 
present an overall way of organizing the computations in a program, 
where objects are just particular instances of classes.

The feature of classes that is perhaps the most useful part of object-
oriented programming is encapsulation.

Imagine that you want to write a program that would allow you to 
track what happens with a vending machine—money taken in, the 
number of items left inside, when it's time to reorder, etc.

The focus in object-oriented programming is to identify objects. In 
the case of vending machines, any particular vending machine is 
an object. But you would also like your program to handle vending 
machines more generally. So, you could also have a vending machine 
class—a way of referring to all vending machines.

There were "pure" object-oriented languages before C++, 
and there have been languages developed after C++, such 
as Java, that only allow object-oriented programming. 
By contrast, C++ lets you use both a procedural and an 
object-oriented style. And compared to other languages 
that offer some of both, such as Python, C++ has a very 
complete set of object-oriented features. It enables you to 
program in a strict object-oriented style if you want to.

http://www.thegreatcourses.com


a

176Lecture 16 | Objects and Classes: Encapsulation in C++

Although each vending machine 
object gets declared in a way that 
makes it look like a single variable, 
in reality, each vending machine 
contains more variables. For 
example, there are variables for 
money, including

 » the amount of money someone 

has put into the machine toward 

buying something, or the credit 

that has been accumulated;

 » the current total amount of money 

collected by the machine;

 » the prices for all of the items; and

 » the inventory level of each item.

In addition to the data that you 
want to track for the vending 
machine, you also have actions—
also known as operations—that 
you want a vending machine to 
be able to perform. These actions 
include

 » taking in money,

 » giving the customer an item,

 » returning change, and

 » reporting inventory levels so that it 

can be refilled the proper amount.

You keep track of the data with 
variables, and you handle the 
actions with functions.

Using object-oriented 
programming, you can put all 
of these variables and functions 
together into one package.

You can collect all the stuff related 
to a vending machine—all its data 
variables and all the functions 
that it needs—into one vending 
machine class. And you don't 
need to let someone outside the 
vending machine know everything 
going on inside; the inventory data, 
for example, can be hidden from 
the outside. That's because all 
that data and all those functions 
are wrapped up together in one 
package—a process referred to as 
encapsulation.

An object is just one particular 
instance of a more general 
class. For a given class, you can 
have many actual objects.

When writing code, you can 
think of each class as referring 
to a new type—a type that's 
defined by the programmer.

So, when you define the class 
vending_machine, you are 
defining a new type of variable. 

Then, you can use that new 
type to define any specific 
machine. Defining each specific 
machine looks like how you 
defined a variable; that is, 
defining an object of a class is 
just like defining a variable of a 
type. You'll define a class, such 
as vending_machine (a), and 
then you can declare variables 
of that type, writing things like 
vending_machine lobby_
soda_machine (12).

The concept of classes is important enough that when C++ was first being developed, it was originally called C with Classes.

Three classes you've 
already been using are 
vector, string, and 
fstream. These were 
predefined classes that you 
accessed from the vector 
library, the string library, 
or the fstream library 
using #include.

// Program 16_1
// Very basic class example
#include <iostream>
using namespace std;

class vending_machine {
 // More stuff here
};

int main()
{
 vending_machine lobby_soda_machine; 
}

http://www.thegreatcourses.com


177Lecture 16 | Objects and Classes: Encapsulation in C++

// CREATING CLASSES

You declare a class in a similar way to how 
you declare a function. It'll typically be defined 
outside of the main function, closer to the top 
of the program.

You start with the keyword class and then 
give the name of the class—in this case, 
vending_machine. The name of the class will 
be the name for the new type you create.

Next, you have curly braces, which group the 
definition of the class all together. At the end 
of the curly braces will be a semicolon. Note 
that this is one of the few times you need to 
add a semicolon after curly braces.

Once you have a class, you can declare 
objects as instances of the class, just like you 
would any other variable.

In Program 16_1 on page 176, you've 
declared a class named vending_machine 
by writing class vending_machine {};. 
Obviously, there's nothing in the class at this 
time; so far, it's useless. But this gives you the 
ability to declare objects of type vending_
machine.

Remember that a class is a way of defining a 
new type, so classes are defined outside the 
main, or any other, function. Objects can then 

be declared to be of that new type. Variables 
are typically declared inside of functions, 
including main.

Now you can declare 2 vending machines, 
called lobby_machine and break_room_
machine. All you do to declare them as 
variables is write the following: 

  vending_machine lobby_machine;
vending_machine break_room_machine;. 

These commands will create 2 vending_
machine objects.

// SORTING DATA IN CLASSES

A class is going to contain, inside of itself, a set of variables and 
functions called member variables and member functions. The class 
is a way of grouping all of those variables and member functions 
together—encapsulating them. So, when you create a new object of 
that class type, you're also creating a bunch of subordinate member 
variables defined by that class but with values specific to each 
object. Basically, those sub-variables "belong" to the object as its 
member variables.

For vending machines, one of the things you wanted to store is 
the price of the item that the machine sells. So, inside of the class 
definition, you will create a floating-point member variable named 
price. Before you declare the member variable, you write the line 
public:. This just means that the member variable can be seen 
outside the class. You just declare this in a similar way as you would 
declare any other variable: the type, the name of the member 
variable, and then a semicolon. In this case, that's float price;.

Remember that classes need semicolons after the closing curly 
brace. Fortunately, in most cases, if you forget, the compiler 
will catch a missing semicolon and remind you to put it 
in there.

http://www.thegreatcourses.com


b

178Lecture 16 | Objects and Classes: Encapsulation in C++

This means that a vending machine contains 
a member variable, sometimes called an 
attribute, named price. Every object of type 
vending_machine will have this sub-variable 
inside of it.

To access this member variable—the attribute 
sub-variable that's included inside of an 
instance of the vending_machine class—you 
just use the object name, followed by a period, 
followed by the variable: object.member_
variable.

So, if you've declared an instance of a vending 
machine, such as the variable lobby_machine, 
this is a vending machine object. To access the 
price member variable inside of the lobby_
machine, you write lobby_machine.price.

At the beginning of Program 16_3_a, you 
have your class definition. This declares a 
vending_machine type that's available to the 
entire program. In this case, the class contains 
just one public member variable: a float 
variable named price (b).

When you execute the first line of the code in 
main, it'll create a new object named lobby_
machine (13). That will be an instance of the 
class vending_machine, and that instance 
will contain its own member variable inside, 
named price.

The next line will create another new object, 
named break_room_machine (14). Again, it'll 
be an instance of the class vending_machine, 
meaning that it will have its own variable inside 
named price.

Then, you will assign a price of $1 to the 
lobby_machine. You write lobby_machine.
price, which means that you are referring to 
the variable price within the object lobby_
machine. You assign that the value 1.00, so the 
memory will store 1.00 in that variable in that 
object (16).

Likewise, when you assign a price of 2.25 to the 
break_room_machine, that will assign the value 
to the price variable in that object. Notice that 
the price is not shared between the 2 instances 
of vending_machine. Each instance—each 
object—gets its own price variable (17).

When you print out lobby_machine.price 
and break_room_machine.price, you 
are printing out the values from 2 different 
variables.

// Program 16_3_a
// Vending Machine class example 1 - one member variable
#include <iostream>
using namespace std;

class vending_machine {
public:
 float price;
};

int main()
{
 vending_machine lobby_machine;
 vending_machine break_room_machine;

 lobby_machine.price = 1.00;
 break_room_machine.price = 2.25;

 cout << "The prices are: " << lobby_machine.price << " and " 
  << break_room_machine.price << endl;
}

http://www.thegreatcourses.com


c

e

d

179Lecture 16 | Objects and Classes: Encapsulation in C++

You can define more than one member 
variable within a class. So, let's create new 
member variables for credit and money_
collected and an integer variable for 
inventory (c).

You can then give any object access to each 
of the member variables by writing .price, 
.inventory, .credit, and .money_collected 
(d). This works just the way that accessing the 
price did; you're accessing a variable that's an 
attribute, or member, of the specific object.

This idea of packaging data together in one 
large container goes back to the days of C, 
when the container was called a struct (short 

for structure). Structs are still allowed in C++, 
but they're now almost the same as classes; 
the use of struct and class are pretty much 
interchangeable.

What really distinguishes the C++ class from 
the old-style struct is the ability to have 
member functions.

Member functions, or methods, get declared 
just like member variables in the class 
definition. Then, to call the function, you 
give the name of the object, then a period, 
and then the function name, along with the 
parentheses and any parameters: some_
object.function_name(...).

For example, say you wanted to make your 
vending machine friendlier, so you defined 
a function called print_hello that will 
just output the word Hello. You define the 
function within the class definition, so it's a 
member function (e).

Then, in the main program, you have an 
instance of that class. In this case, the class is 
vending_machine and the instance is lobby_
machine (20). So, you can write lobby_
machine.print_hello() (22).

When this is run, Hello is indeed printed to 
the screen.

// Program 16_3_b
// Vending Machine class example 2 - several member variables
#include <iostream>
using namespace std;

class vending_machine {
public:
 float price;
 float credit;
 float money_collected;
 int inventory;
};

int main()
{
 vending_machine lobby_machine;
 vending_machine break_room_machine;

 lobby_machine.price = 1.00;
 lobby_machine.inventory = 200;
 lobby_machine.credit = 0.0;
 lobby_machine.money_collected = 0.0;
}

// Program 16_4
// Vending Machine class example 3 - member function
#include <iostream>
using namespace std;

class vending_machine {
public:
 float price;
 float credit;
 float money_collected;
 int inventory;

 void print_hello() {
  cout << "Hello" << endl;
 }
};

int main()
{
 vending_machine lobby_machine;

 lobby_machine.print_hello();
}

http://www.thegreatcourses.com


f

g

h

180Lecture 16 | Objects and Classes: Encapsulation in C++

Now suppose you want the machine to be 
able to tell workers how many items are 
remaining inside so that they know if it's time 
to restock.

Let's create a function named number_
remaining that will return the number of 
items remaining.

This function does not need any parameters; 
you can just return an integer, the number of 
items in the machine. So, the function will be 
declared as int number_remaining(), with no 
parameters needed inside (f).

The body of this function is really simple: 
return inventory (14). Notice that because 
the function and the variable are part of the 
same class, the function can refer to the 
variable simply as inventory. When the 
function refers to inventory, it will use the 
value in the inventory variable for whichever 
object it is a part of.

In this case, when you set the inventory level 
to 250 in the lobby_machine (21), then 
calling lobby_machine's member function 
number remaining will return the value in that 
lobby machine: 250.

Now let's look to Program 16_6 to see how 
your vending machine will handle money. First, 
you need to be able to take in money. When 
someone puts money into the machine, that 
person should have a credit for that amount 
of money. Let's call that member function 
deposit_money.

The deposit_money function will again be 
very simple. It doesn't need to return anything; 
it's just a deposit. So, you declare it as void 
deposit_money.

The function will take in a floating-point 
number, the amount that's being deposited. 
So, you have (float amount) (17).

Whatever money is deposited will go toward 
a credit in the machine. So, the body of 
the function will just increase credit by 
the amount of the deposit: credit += 
amount. (18) 

You'll also add an output statement to note 
what the current credit is after the deposit is 
made (19).

Then, in your main program, you can create a 
vending_machine object and set the credit in 
the object to 0 (g). Then, you'll deposit 0.25, 
0.25, and 0.10 (h). The credit at this point is 
0.6, as expected.

// Program 16_5
// Vending Machine class example 
4 - alternative member function
#include <iostream>
using namespace std;

class vending_machine {
public:
 float price;
 float credit;
 float money_collected;
 int inventory;

 int number_remaining() {
  return inventory;
 }
};

int main()
{
 vending_machine lobby_
machine;
 lobby_machine.inventory = 250;

 cout << lobby_machine.number_
remaining() << " items remain in 
the machine." << endl;
}

// Program 16_6
// Vending Machine class example 5 - 
multiple member functions
#include <iostream>
using namespace std;

class vending_machine {
public:
 float price;
 float credit;
 float money_collected;
 int inventory;

 int number_remaining() {
  return inventory;
 }

 void deposit_money(float amount) {
  credit += amount;
  cout << "Current credit is " << 
credit << endl;
 }
};

int main()
{
 vending_machine lobby_machine;
 lobby_machine.credit = 0.0;

 lobby_machine.deposit_money(0.25);
 lobby_machine.deposit_money(0.25);
 lobby_machine.deposit_money(0.10);
}

http://www.thegreatcourses.com


181Lecture 16 | Objects and Classes: Encapsulation in C++

// PUBLIC VERSUS PRIVATE

So far, you've always had public: at the top of your class 
definition—meaning that everything you declared after that in the 
class is a public variable or function, available for anyone to call from 
anywhere.

But you can also have private variables and functions, which you get 
by writing private: beforehand.

When a variable or function is private, it is accessible only to other 
parts within that class; that is, the functions within that same class 
can access the private variables and call private functions, but those 
outside the class cannot.

To initialize the member variables, you just write an 
assignment operation at the time of declaration, 
just like with any other variable declaration. In 
this code, you set both the credit and money_
collected to 0.0, a default value of 1.0 for the 
price, and an inventory level of 0.

To return the change from the machine, you could 
write a return_change function. It would take 
whatever credit is currently in the machine, return 
it, and set the current credit to 0. You output the 
amount of money that you're returning.

Exercise

Click here to see the solution.

Create a function for pulling together the specific steps a vending machine 
goes through when the machine is asked to vend an item.

Note that for an item to be vended, there needs to be an item in the 
machine and enough credit to purchase it. If there is, then you'll distribute 
that item, deduct the price from the credit, and return any change. Make this 
function return a Boolean: true if an item is vended and false otherwise.

Use the following pseudocode to write the code.

1 define a function in the class named vend that returns a Boolean

a check to see if there is enough credit to purchase an item

b check to see if you actually have any items in inventory

c handle the transaction, adjusting credit, money collected, and inventory

d return any change to the customer

8  float price = 1.0;
9  float credit = 0.0;
10  float money_collected = 0.0;
11  int inventory = 0;

http://www.thegreatcourses.com


182Lecture 16 | Objects and Classes: Encapsulation in C++

Going back to the vending machine example, the member 
variables are now marked as private, with private: in front of their 
declarations. The member functions are still public, with public: in 
front of them.

When you try to run this code, you get an error, coming from the 
line in the main program where you try to access inventory to 
assign some initial inventory to the lobby_machine (54). This is not 
allowed; because inventory is private, you cannot access it from 
outside the class.

To fix this, you can move the public: line up above the inventory 
member variable. That will make inventory public, meaning that it's 
OK to access it. 

If you run the code 
now, everything is 
fine. You are able to 
access inventory from 
outside the class, so 
the line that gave you 
trouble is no longer 
an issue.

7 private:
8  float price = 1.0;
9  float credit = 0.0;
10  float money_collected = 0.0;
11  int inventory = 0;
12 
13 public:
14  int number_remaining() {

7 private:
8  float price = 1.0;
9  float credit = 0.0;
10  float money_collected = 0.0;
11 
12 public:
13  int inventory = 0;
14  int number_remaining() {

// Program 16_9_ERROR
// Vending Machine class example 8 - public and private members
#include <iostream>
using namespace std;

class vending_machine {
private:
 float price = 1.0;
 float credit = 0.0;
 float money_collected = 0.0;
 int inventory = 0;

public:
 int number_remaining() {
  return inventory;
 }

 void deposit_money(float amount) {
  credit += amount;
  cout << "Current credit is " << credit << endl;
 }

 float return_change() {
  float amt_to_return;
  amt_to_return = credit;
  credit = 0;
  cout << "Returning " << amt_to_return << " in change." << endl;
  return amt_to_return;
 }

 bool vend() {
  if (credit < price) {
   cout << "Please deposit more money" << endl;
   return false;
  }
  else if (inventory <= 0) {
   cout << "Sold Out." << endl;
   return false;
  }
  else {
   credit -= price;
   money_collected += price;
   cout << "Vending an item" << endl;
   inventory--;
   return_change();
   return true;
  }
 }
};

int main()
{
 vending_machine lobby_machine;
 lobby_machine.inventory = 200;

 lobby_machine.deposit_money(0.25);
 lobby_machine.deposit_money(0.25);
 lobby_machine.deposit_money(0.60);

 if (lobby_machine.vend()) {
  cout << "We got an item!" << endl;
 }
 else {
  cout << "No item for us." << endl;
 }
}

http://www.thegreatcourses.com


183Lecture 16 | Objects and Classes: Encapsulation in C++

Notice that you did not get a compiler error 
in any of the many places inside the member 
functions where you accessed member 
variables. Because you were accessing the 
private members from within the class, 
everything was OK. Only when you tried to 
access those members from the main function 
was there an issue.

The public and private designations can 
be used multiple times in a class definition. 
However, it's common practice to put the 
private members first and the public members 
after that. It's also common practice to put all 
the member variables (attributes) first and the 
member functions (methods) after that.

Besides public and private designations, 
there's also protected, but for the cases 
you've seen, protected acts just like private.

In a class definition, the default assumption 
is that the members are being defined as 
private. That's why you previously had to have 
public: in your code; if you had left it off, 
everything would have been seen as private.

It's not uncommon for all of the member 
variables to be private, or protected. That 
makes sure that nothing will mess around with 
the internal structure of the class unless it 
does so through an approved channel—one of 
the public functions.

But it's still common to need to adjust those 
variables or find out what they are.

Accessor functions let you read the value 
of a private member variable. Basically, they 
provide one of those approved channels 
through which information is allowed to leave 
the class.

Mutator functions let you modify the value of 
a private member variable.

When you're debugging, accessor and mutator 
functions give you a line of code that you can 
set a breakpoint at so that you know when a 
member is being accessed. Conversely, you 
have no way of automatically pausing when a 
public member is being changed.

So, accessors and mutators help you ensure 
that the overall object maintains internal 
consistency whenever it is used. 

This is actually the main place where 
there's a difference between the C++ 
class and the C++ struct: In a C++ 
class, the default is that everything is 
private, but in a struct, the default is 
that everything is public.

READINGS
a Stroustrup, Programming Principles and Practice Using C++, sections 9.1–9.4.

b Lippman, Lajoie, and Moo, C++ Primer, sections 7.1 and 7.2.

http://www.thegreatcourses.com


184Lecture 16 | Objects and Classes: Encapsulation in C++

Exercise Solution

Click here to go back to the exercise.

The function vend (lines 30–47) defines the vending operation.

1 // Program 16_8
2 // Vending Machine class example 7 - vending an item
3 #include <iostream>
4 using namespace std;
5 
6 class vending_machine {
7 public:
8  float price = 1.0;
9  float credit = 0.0;
10  float money_collected = 0.0;
11  int inventory = 0;
12 
13  int number_remaining() {
14   return inventory;
15  }
16 
17  void deposit_money(float amount) {
18   credit += amount;
19   cout << "Current credit is " << credit << endl;
20  }
21 
22  float return_change() {
23   float amt_to_return;
24   amt_to_return = credit;
25   credit = 0;
26   cout << "Returning " << amt_to_return << " in change." << endl;
27   return amt_to_return;
28  }
29 
30  bool vend() {
31   if (credit < price) {
32    cout << "Please deposit more money" << endl;
33    return false;
34   }

35   else if (inventory <= 0) {
36    cout << "Sold Out." << endl;
37    return false;
38   }
39   else {
40    credit -= price;
41    money_collected += price;
42    cout << "Vending an item" << endl;
43    inventory--;
44    return_change();
45    return true;
46   }
47  }
48 };
49 
50 int main()
51 {
52  vending_machine lobby_machine;
53  lobby_machine.inventory = 200;
54 
55  lobby_machine.deposit_money(0.25);
56  lobby_machine.deposit_money(0.25);
57  lobby_machine.deposit_money(0.60);
58 
59  if (lobby_machine.vend()) {
60   cout << "We got an item!" << endl;
61  }
62  else {
63   cout << "No item for us." << endl;
64  }
65 }

http://www.thegreatcourses.com


185Lecture 16 | Objects and Classes: Encapsulation in C++

// QUIZ

1 For each of the following, determine whether the statement is true or false:

a If you do not specify whether something is public or private in a class, 

it is public.

b You can call a private member function from within the same class.

c You can access a public member variable from outside the class.

d A class's member variables must be either all public or all private.

e All other things being equal, it's better for member variables to be 

private.

2 Create a class named message with a single member function named 

display that, when called, will display Hello, World!.

3 The distance between a point (x1, y1) and a point (x2, y2) is given by the 

formula distance = . Assume there is a class 

defined as

class point {
 public:
 float x;
 float y;
};

and that the cmath library is already included. Write a function that takes 

in 2 points and returns the distance between them.

4 What would be the output of the following code?

1 #include <iostream>
2 using namespace std;
3 
4 class pointcounter {
5  private:
6  int points=0;
7  int bonus=500;
8  
9  public:
10  void increasepoints(int p) {
11   points += p;
12  }
13  void givebonus() {
14   points += bonus;
15  }
16  int number() {
17   return points;
18  } 
19 };
20 
21 int main()
22 {
23  pointcounter gamescore;
24  cout << "Score is now: " << gamescore.number() 

<< endl;
25  gamescore.increasepoints(10);
26  cout << "Score is now: " << gamescore.number() 

<< endl;
27  gamescore.givebonus();
28  cout << "Score is now: " << gamescore.number() 

<< endl;
29 } Click here to see the answers.

http://www.thegreatcourses.com


186Lecture 16 | Objects and Classes: Encapsulation in C++

// QUIZ ANSWERS

1 a False. If you do not specify one way or another, members default to 

private.

b True. Private member variables and functions are available to anything 

else within the same class but nothing outside that class.

c True. A public member variable or function can be accessed from 

anything else outside the class.

d False. You can have some member variables public and some private.

e True. If member variables are private, then only the functions within 

the class can modify them, so the class can ensure the variables 

always have valid values.

2 You should declare a class by writing class message and then curly 

braces. Within the curly braces, you want to declare the member function 

as being public so that it can be called. The member function itself will be 

straightforward: void return, no parameters, and just a single output line in 

the body.

class message {
 public:
 void display() {
  cout << "Hello, World!" << endl;
 }
};

3 A function might be: 

float distance(point a, point b) {
 return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
}

Notice that there are 2 parameters, each of type point, named a and b. 

In the function, you can access the member variables of the 2 parameters 

by using a.x, a.y, b.x, and b.y. Note that there are other ways to write the 

function, too.

4 The output is:

Score is now: 0
Score is now: 10
Score is now: 510

Notice that the private variable points is initialized to 0. The number 

member function will return the value of points, so the first output line 

will state that the points are initially 0. The increasepoints member 

function increases the points by the argument value, which is 10 in this 

case. Thus, the next line of output is 10. Finally, the givebonus member 

function will increase the points by 500, increasing points by 500 more, so 

the final output line will output the value 510.

Click here to go back to the quiz.

http://www.thegreatcourses.com


187Lecture 17 | Object-Oriented Constructors and Operators

The ability to design appropriate classes may be the single most 
important skill in object-oriented programming. Classes allow you to 
encapsulate data relationships in ways that match up very nicely with 
many real-world problems. But how well your program works—indeed, 
whether it works at all—can depend crucially on how your classes, and 
their operations, have been set up at the start of the program. Two key 
tools for getting classes off to a strong start for any object-oriented 
program are constructors and operator overloading.

17 IN THIS LECTURE:
Constructors

Program 17_1
Program 17_3

Operator Overloading
Program 17_6

Overloading Binary Operators
Program 17_8
Program 17_10

Overloading Unary Operators
Program 17_11
Program 17_11_a

Friend Functions
Program 17_12

Overloading Stream Operators
Program 17_13

Quiz
Quiz Answers

Object-Oriented Constructors 
and Operators

// CONSTRUCTORS

Whenever you declare a new class or object, 
the computer sets aside a chunk of memory. 
This memory will hold all of the member 
variables for that object. So, you want to 
have some way of initializing the memory—
that is, the member variables—and that's 
where a constructor comes in. A constructor 
is a special function run at the time a new 
object is created. Its purpose is to initialize 
the object to some valid state so that the 
member variables all have reasonable values.

Often, the constructor you'll want to define is 
the default constructor. A default constructor 
that you create should be defined as a 
public member function of the class. Make 
sure to write public: before defining the 
constructor.

The constructor is a special function; there 
is no return type, because the only thing it is 
doing is initializing an object.

The word default can have 2 
meanings here:

 » The default constructor is what's 
called when you declare an object 
in the common way, where you 
just list the type and then the 
variable name.

 » But if a user doesn't specify any 
constructor at all, then the compiler 
will automatically create its own 
default constructor for the class.

http://www.thegreatcourses.com


a

b

188Lecture 17 | Object-Oriented Constructors and Operators

The name of the constructor function should 
just be the class name. And the default 
constructor should take no parameters. So, 
you'll define the default constructor by writing 
the class name and then parentheses; then, 
inside curly braces, you'll write whatever you 
want to happen each time you create a new 
instance of that class.

In Program 17_1, a default constructor is 
added after the public designation so that 
it's publicly available. It uses the class name 
vending_machine as the name for the 
constructor function, followed by parentheses, 
in this case with nothing inside, and then an 
opening curly brace (14).

Inside the curly braces, you have all the default 
values you want to set (a). The price, credit, 
and money_collected levels are all set to 0.0. 
The inventory level is set to a default level of 
100. Also, you'll output a message that you've 
created a new vending machine whenever this 
constructor is run (19).

In the main program, you declare a new 
vending machine object named lobby_
machine (30). When you declare the new 
object, there is memory set aside for that 
object—basically enough memory to contain all 

the member variables for a vending_machine. 
And notice that when the object is declared, 
the constructor you defined is executed, so the 
default constructor will set the price, credit, 
money_collected, and inventory for that 
machine. And you'll get the output: Created a 
new vending machine.

If you also access the inventory using the 
number_remaining accessor function (b), 
you see that indeed there are 100 items in the 
machine. The constructor was what set that 
value to 100.

Using a constructor is the preferred way to 
initialize member variables.

 » A constructor is more explicit about what's 

being done at the time of declaration.

 » A constructor is far more flexible. It can print 

out messages and perform more complex 

computations, including making function calls, 
forming more complex variables, and so on.

The constructor format is very much like a 
function, but without a return type. You can 
even take parameters in for a non-default 
constructor, just like you take in parameters 
for a regular function. Then, when declaring 
a new object, you include parentheses and 
arguments.

To ensure that your objects begin in valid states, you should always provide 
constructors for all of your classes.

// Program 17_1
// Vending Machine class example
#include <iostream>
using namespace std;

class vending_machine {
private:
 float price;
 float credit;
 float money_collected;
 int inventory;

public:
 vending_machine() {
  price = 0.0;
  credit = 0.0;
  money_collected = 0.0;
  inventory = 100;
  cout << "Created a new 
vending machine." << endl;
 }

 int number_remaining() {
  return inventory;
 }

};

int main()
{
 vending_machine lobby_machine;

 cout << "There are " << 
lobby_machine.number_remaining() 
<< " items." << endl;
}

http://www.thegreatcourses.com


189Lecture 17 | Object-Oriented Constructors and Operators

Let's see how you could define a new constructor for your 
vending_machine.

Suppose you want to be able to specify a specific starting 
inventory level, rather than a default level, at the time the object 
is allocated. In that case, you'd want a constructor that takes in 
one integer parameter. Remember, this is no longer the default 
constructor—the one with no parameters—but rather a new 
constructor.

Again, the name is just the class name, but now it takes in a 
single integer, starting_inventory (22). And the function 
itself sets up all the other values to their defaults, but sets the 
inventory to that parameter value that should be passed in (26).

When declaring a new vending_machine, you give the variable 
name, which in this case is again lobby_machine, but also have 
parentheses in which you have a single integer argument (38). 
Then, when you run this program, the new constructor—not the 
default constructor—will be used to initialize the object.

So, in this case, because you passed in 50 as an argument 
when you declared the vending_machine, you have an initial 
inventory level of 50.

Exercise

Click here to see the solution.

Write a constructor that takes in both an item price 
and an initial level of inventory and then call that to 
create a vending_machine that has 75 items, costing 
$5 each.

// Program 17_3
// Vending Machine non-default constructor
#include <iostream>
using namespace std;

class vending_machine {
private:
 float price;
 float credit;
 float money_collected;
 int inventory;

public:
 vending_machine() {
  price = 1.0;
  credit = 0.0;
  money_collected = 0.0;
  inventory = 100;
  cout << "Created a new vending machine." << endl;
 }

 vending_machine(int starting_inventory) {
  price = 1.0;
  credit = 0.0;
  money_collected = 0.0;
  inventory = starting_inventory;
  cout << "Created a new vending machine." << endl;
 }

 int number_remaining() {
  return inventory;
 }

};

int main()
{
 vending_machine lobby_machine(50);

 cout << "There are " << lobby_machine.number_
remaining() << " items." << endl;
}

http://www.thegreatcourses.com


190Lecture 17 | Object-Oriented Constructors and Operators

You can pass in arguments that are variables 
just as easily as other values. In this case, you 
read in from the user a number of initial items 
that the machine should be stocked with. 
Then, you can declare a vending machine with 
that number.

Notice that this sort of initialization could 
not occur if variables were just set to default 
values by assignment statements in the class 
declaration.

// OPERATOR OVERLOADING

You've already encountered function overloading, where you can 
use the same function name but take different parameters to get 
different behavior. Operator overloading is similar, but you take 
different operands to get different behavior from an operator.

You've already seen examples of operator overloading. You've 
seen how + can be used to mean addition for number types or 
concatenation for string types. The operator has been "overloaded" 
to take on more than just one meaning; it has different meanings 
depending on the implementation.

But that's not the only place you've seen operator overloading. The 
streaming operators (<< and >>) are used for streaming input and 
output for the console, a file, or a stringstream. These operators have 
been defined for multiple data types.

When you have the stream operator to output a floating-point 
number, it behaves one way: It analyzes the number and displays 
the digits of the number with the decimal point shown in the correct 
position. When you use the same streaming operator to output a 
string, it behaves a different way: It analyzes the array of characters 
kept in the string and outputs each character in the string to the 
stream.

Be aware that you should not try to declare an object using the default constructor by just using parentheses with no arguments. 
If you're using the default constructor, just leave off the parentheses entirely. Only use parentheses when you want to use a non-
default constructor or when you're declaring the constructor within the class.

If you did not have operator overloading, you would 
have to have different operators for outputting integers, 
outputting floats, outputting strings, and so on.

36 int main()
37 {
38  cout << "How many items does the machine start wtih? ";
39  int init_number;
40  cin >> init_number;
41  vending_machine lobby_machine(init_number);
42 
43  cout << "There are " << lobby_machine.number_remaining() << " items." << endl;
44 }

http://www.thegreatcourses.com


191Lecture 17 | Object-Oriented Constructors and Operators

Using stream operators to stream from input shows the same 
differences; the input is treated in a way that is specific to the type 
you are wanting to read in. So, you can use the same operator—the 
stream operator—but it is specialized to the type you need.

In fact, the stream operator can also be used with an integer on the 
left, where it has a totally different operation from when there is a 
stream on the left. With integers, the stream operator actually means 
"shift the bits of the integer left or right a certain number of spaces." 
While those shifts can be useful in making really efficient code, that 
operation has nothing to do with streaming input or output!

There is a wide variety of operators you can 
overload. Binary operators take 2 elements per 
operator. Examples include arithmetic operators, 
stream operators, comparison operators, and 
Boolean operators.

There are also a few unary operators, which take 
just a single element.

All of these operators, and even a few less common ones, are those 
you can overload; you can create your own version of how they 
should operate for a particular class or combination of classes.

// OVERLOADING BINARY OPERATORS

One way of overloading a binary operator involves defining an 
operator in a very similar way to how you define a function.

Whenever a binary operator is used, there are going to be 2 
operands: one just before the operator and one immediately after. 
Then, there will be a result of some type. For example, a comparison 
operator should probably give a Boolean result.

The type of result is basically the return type of the operator 
function, which will take exactly 2 parameters: the object type 
of the first and second operands. The only "different" part is the 
function name, which will have the keyword operator, followed by 
the particular operation. And all of this gets defined just like any 
other function would—not as a part of any class.

+ - * / % << 
>> > < >- <= 
== != && || 
& | ^ [] ->

- + ++ 
-- ! * &

Operator overloading is more than just a clever way 
to put familiar characters to a new use; it can be a 
fundamental part of making a class more widely useful.

// Program 17_6

// Example of shifting bits

#include <iostream>

using namespace std;

int main() {

 int i = 1;

 int j = i << 3; // Shifting bits 3 
spaces left

 cout << j << endl;

}

http://www.thegreatcourses.com


c

d

192Lecture 17 | Object-Oriented Constructors and Operators

Suppose you have a class you are 
using to keep track of lightbulbs. 
Every bulb will have 3 pieces of 
data: the number of watts used, 
the number of lumens (amount of 
light) produced, and the equivalent 
color temperature of the bulb.

You can define a class with those 
member variables, as you can 
see in the code. Notice that all 3 
member variables are public in this 
case and that a default constructor 
is being used to set initial values 
for the 3 values (c).

Let's say that you want the ability 
to create a new bulb that is some 
factor multiple of an existing bulb. 
For example, if a bulb is 2 times 
another bulb, it should use 2 times 
as many watts and produce 2 
times as many lumens but have 
the same color temperature.

Let's see how you could define 
a multiplication operator for the 
lightbulb. Your multiplication 
operator should take in 2 
operands: a lightbulb and an 
integer that you are multiplying the 
lightbulb by. And the result should 
be a new lightbulb, one using that 
factor more watts and producing 
that factor more lumens. So, your 
operator definition should produce 
another lightbulb as a result, so 
the definition has a return type 

of lightbulb. You then would 
write operator * to show that 
you are defining the multiplication 
operator. Then, the parameters for 
the operator should be a lightbulb 
(labeled bulb in this case) and 
an integer (labeled increase_
factor) (19).

Inside of the function, notice that 
you create a new lightbulb, called 
ans, short for answer, because 
it will be the answer you return 
from the operator. You set the 
watts used and the lumens as a 
product of those elements of bulb 
multiplied by increase_factor. 
The color temperature is just the 
same as bulb is. Then, you return 
ans (d).

In your main routine, you can now 
create 2 bulbs named bulba and 
bulbb, where bulba is initialized 
with the default constructor so 
that it has 60 watts, 900 lumens, 
and a 2700 color temperature. 
You set bulbb to be bulba times 
2. This will call the multiplication 
operator on a lightbulb times an 
integer, so bulbb should have 
twice the number of watts, or 120, 
and twice the number of lumens, 
or 1800, while having the same 
color temperature, 2700, as bulba. 
And that's indeed what you see as 
a result.

Note that operators are not automatically commutative; 
in other words, you cannot switch around the order of the 
2 operands. So, you could not multiply an integer times a 
lightbulb; you defined a lightbulb times an integer, but not 
the other way around.

// Program 17_8
// Operator example - multiplying lightbulb
#include<iostream>
using namespace std;

class lightbulb {
public:
 int watts_used;
 int lumens;
 int temperature;

 lightbulb() {
  watts_used = 60;
  lumens = 900;
  temperature = 2700;
 }
};

lightbulb operator *(lightbulb bulb, int increase_
factor) {
 lightbulb ans;
 ans.watts_used = bulb.watts_used * increase_factor;
 ans.lumens = bulb.lumens * increase_factor;
 ans.temperature = bulb.temperature;
 return ans;
}

int main() {
 lightbulb bulba, bulbb;
 bulbb = bulba * 2;
 cout << bulbb.watts_used << " " << bulbb.lumens << " 
" << bulbb.temperature << endl;
}

http://www.thegreatcourses.com


e

f

g

193Lecture 17 | Object-Oriented Constructors and Operators

If you had also wanted to be able to define an integer times a lightbulb, 
you'd have had to define a separate operator (e). Then, you could multiply 
2 times a lightbulb (37).

Also, if you had not made the 
member elements public, then 
you couldn't have written the 
multiplication operator. It would 
not have been possible to access 
private member variables of 
the object from outside the 
function. Instead, you'd have had a 
compilation error.

So, it's more common for 
operators to be defined within a 
class. That way, you can access all 
the elements of the class without 
accessors and mutators.

In Program 17_10, the member 
values have been made private, but 
a print_vals function has been 
added that prints all the member 
variables to the console, separated 
by spaces (f). This will let you print 
the values of the member variables 
from outside the class.

The main routine is set up in a very 
similar way as before, with the only 
difference being that you're calling 
the print_vals function because 
the member variables of the 
lightbulb class are private (g).

27 lightbulb operator *(int increase_factor, lightbulb bulb) {
28  lightbulb ans;
29  ans.watts_used = bulb.watts_used * increase_factor;
30  ans.lumens = bulb.lumens * increase_factor;
31  ans.temperature = bulb.temperature;
32  return ans;
33 }
34 
35 int main() {
36  lightbulb bulba, bulbb;
37  bulbb = 2 * bulba;
38  cout << bulbb.watts_used << " " << bulbb.lumens << " " 

<< bulbb.temperature << endl;
39 }

// Program 17_10
// Operator example - defining inside a class
#include<iostream>
using namespace std;

class lightbulb {
 int watts_used;
 int lumens;
 int temperature;

public:
 lightbulb() {
  watts_used = 60;
  lumens = 900;
  temperature = 2700;
 }

 lightbulb operator *(int increase_factor) {
  lightbulb ans;
  ans.watts_used = watts_used * increase_
factor;
  ans.lumens = lumens * increase_factor;
  ans.temperature = temperature;
  return ans;
 }

 void print_vals() {
  cout << watts_used << " " << lumens << 
" " << temperature << endl;
 }
};

int main() {
 lightbulb bulba, bulbb;
 bulbb = bulba * 2;
 bulbb.print_vals();
}

http://www.thegreatcourses.com


194Lecture 17 | Object-Oriented Constructors and Operators

Notice how the multiplication operator has 
been defined inside the class (18). First, you 
still have the return type of lightbulb, just 
like you did when the operator was defined 
outside the class. 

You also still have the keyword operator and 
the particular operator you are dealing with, 
which in this case is * for multiplication. A 
key difference to note is that there is only one 
parameter: an integer. The first parameter—in 
this case, a lightbulb—is implied because this 
operator is being defined inside the lightbulb 
class. When defining in a class like this, you 
don't specify the first parameter and will get 
an error if you try to.

Inside of the routine, you can access the values 
of the member variables for the particular 
lightbulb you are operating with directly. 
You simply write watts_used, lumens, and 
temperature to get the watts used, lumens, 
and temperature for this particular lightbulb. 

And notice that you could set the values for 
the member variables of the lightbulb you 
are returning directly. Even though they are 
private members, because you are writing 
this routine inside of the class, you have 
access to those member variables, even the 
private ones.

Also, keep in mind that the order of operations 
still matters. By defining multiplication inside 
of the class, that only helps you multiply a 

lightbulb by an integer. You still could not 
reverse that to multiply an integer times a 
lightbulb. 

In fact, from within the lightbulb class, you 
have to start with a lightbulb times something. 
From within the class, you can't ever do the 
reverse—define something times a lightbulb! 
The only way to define something times 
a lightbulb would be to define it outside 
the class.

18  lightbulb operator *(int increase_factor) {

19   lightbulb ans;

20   ans.watts_used = watts_used * increase_factor;

21   ans.lumens = lumens * increase_factor;

22   ans.temperature = temperature;

23   return ans;

24  }

http://www.thegreatcourses.com


h

195Lecture 17 | Object-Oriented Constructors and Operators

// OVERLOADING UNARY OPERATORS

Let's try defining a new operation for !, which 
usually means "not" in Boolean logic.

Remember that you can define operators to 
mean whatever you want and that the best 
redefinitions typically expand an existing 
meaning in some way. Here, let's say that ! 
defines a "dead" lightbulb—a "not" lightbulb. 
You'll set the watts used and lumens to 0 and 
you'll copy the color temperature from before 
so that you can remember what type each 
was originally.

If you define the unary operator inside the 
class, you have an empty parameter list. You 
just write lightbulb operator !() (30).

The function definition just sets watts_used 
and lumens to 0 and copies the temperature 
member variable (h).

In the main routine, then, you can create a 
lightbulb named bulb and then print out the 
values from !bulb and see that indeed you 
have the modified value (45).

// Program 17_11
// Operator example - defining a unary operator
#include<iostream>
using namespace std;

class lightbulb {
 int watts_used;
 int lumens;
 int temperature;

public:
 lightbulb() {
  watts_used = 60;
  lumens = 500;
  temperature = 2700;
 }

 lightbulb operator *(int increase_factor) {
  lightbulb ans;
  ans.watts_used = watts_used * increase_factor;
  ans.lumens = lumens * increase_factor;
  ans.temperature = temperature;
  return ans;
 }

 bool operator <(lightbulb& a) {
  return (watts_used < a.watts_used);
 }

 lightbulb operator !() {
  lightbulb ans;
  ans.watts_used = 0;
  ans.lumens = 0;
  ans.temperature = temperature;
  return ans;
 }

 void print_vals() {
  cout << watts_used << " " << lumens << " " << temperature << endl;
 }
};

int main() {
 lightbulb bulb;
 (!bulb).print_vals();
}

http://www.thegreatcourses.com


196Lecture 17 | Object-Oriented Constructors and Operators

In Program 17_11_a, you've created 
2 versions of the ++ operator: one 
for prefix and one for postfix. You 
have an elephant class with height 
and weight. The prefix operator will 
increase the height of the elephant, 
while the postfix operator will 
increase the weight.

For the prefix operator, you just 
have the operator defined with no 
parameters (16). For the postfix 

operator, you have an integer 
parameter included—but it never gets 
used (22).

If you were to define the operator 
outside the class, then the prefix 
version would have one parameter—
of type elephant, in this case—and 
the postfix version would have 2 
parameters: the first one being an 
elephant and the second one being 
an integer.

There are a few rules of thumb for when it's best to define 
operators—inside of the class or outside.

It usually makes sense to define an operation inside the class if 
you're defining

1 any unary operator, or

2 a binary operator that operates on 2 of the same type, such as a 
comparison of 2 objects of the same type.

This is because these are operations that are a part of only that class 
and no other.

On the other hand, it can make sense to define outside

 » if 2 different classes are involved, and

 » especially if you need to provide an operation in both forms.

Still, there's no single right answer; rather, it's a judgment call. Think 
about whether an operator feels more like it's part of a class or 
external to a class.

// Program 17_11_a
// ++ Operator example - prefix and postfix
#include<iostream>
using namespace std;

class elephant {
public:
 float height;
 float weight;

 elephant() {
  height = 10.0;
  weight = 13000.0;
 }

 void operator ++() {
  // Prefix operator - for ++elephant
  cout << "increasing height of 
elephant" << endl;
  height += 0.1;
 }

 void operator ++(int whatever) {
  // Postfix operator - for elephant++
  cout << "increasing weight of 
elephant" << endl;
  weight += 100.0;
 }

 void print_characteristics() {
  cout << "Height is " << height << " 
and Weight is " << weight << endl;
 }
};

int main() {
 elephant Dumbo;
 Dumbo.print_characteristics();
 Dumbo++;
 Dumbo.print_characteristics();
 ++Dumbo;
 Dumbo.print_characteristics();

}

http://www.thegreatcourses.com


197Lecture 17 | Object-Oriented Constructors and Operators

// FRIEND FUNCTIONS

One of the main advantages of defining a function or 
operator inside a class is that you get access to member 
variables and functions.

But even if you define functions or operators outside 
a class—for example, because the function or operator 
involves 2 different classes—there's actually a mechanism to 
make a function or operator still get access to the member 
variables. And this is by declaring the function or operator a 
friend.

To do this, you include the function or operator signature in 
the class definition with the designator friend. That way, 
you can define the function outside the class and still have 
access to member variables. Program 17_12 is an example, 
using lightbulb multiplication.

In the class definition, you say: "There is going to be 
a friend operator that will multiply a lightbulb times 
an integer." The way you do this is by writing friend 
lightbulb operator *(lightbulb, int);. Notice that 
you don't need to give the parameter names, just the 
types (22).

Then, outside of the class, you can define the actual 
operator, this time with named parameters (25). Because 
this is a friend function of the lightbulb class, it will have 
access to all the private members of the lightbulb class. 
So, if the lightbulb has the parameter name bulb, you can 
access elements of the lightbulb by writing bulb.lumens, 
and so on. 

You can also assign values to objects of the type 
lightbulb by writing, for example, ans.temperature, 
where ans is a lightbulb object.

// Program 17_12
// Friend Operator example
#include<iostream>
using namespace std;

class lightbulb {
 int watts_used;
 int lumens;
 int temperature;

public:
 lightbulb() {
  watts_used = 60;
  lumens = 500;
  temperature = 2700;
 }

 void print_vals() {
  cout << watts_used << " " << lumens << " " << temperature 
<< endl;
 }

 friend lightbulb operator *(lightbulb, int);
};

lightbulb operator *(lightbulb bulb, int increase_factor) {
 lightbulb ans;
 ans.watts_used = bulb.watts_used*increase_factor;
 ans.lumens = bulb.lumens*increase_factor;
 ans.temperature = bulb.temperature;
 return ans;
}

int main() {
 lightbulb bulba, bulbb;
 bulbb = bulba * 2;
 bulbb.print_vals();
}

http://www.thegreatcourses.com


198Lecture 17 | Object-Oriented Constructors and Operators

It is very common that you'd want to stream data from 
an object to output it to the console, a file, or a string. 
Likewise, it's common that you'd want to stream data 
into an object. It would be nice to declare a lightbulb 
object and just be able to cout or cin it. But to do 
this, you have to overload the stream operations.

Remember that the syntax of a stream operation is 
that you have the stream on the left, then the stream 
operator (<< for output or >> for input), and then the 
thing you are wanting to stream out of or into. And the 
stream should be able to continue afterward.

Because the stream itself comes at the left of the list, 
that means that you can't write a stream operation for 
your new class as part of that class. 

 So, instead, you need to have the stream operation 
defined outside the class (21). It's a good idea to 
make this stream operator a friend operator (18), 
because that way you'll have access to the member 
variables. 

You can think: "If I'm outputting to a stream, I'll have 
an ostream, and if I'm inputting, I'll have an istream." 
Both are predefined stream types, where cin is an 
example of an istream and cout is an example of an 
ostream.

You'll also need to make sure that your operator 
returns another stream, because that way you can 
stream one thing after another; the result of the 
operation is a stream, which then can have another 
operation applied, and so on .

// OVERLOADING STREAM OPERATORS

READINGS
a Stroustrup, Programming Principles and Practice Using C++, sections 9.4, 9.6, and 9.7.

b Lippman, Lajoie, and Moo, C++ Primer, section 7.5, chap. 14, and section 15.7.

// Program 17_13
// Overloading Output Stream Example
#include<iostream>
using namespace std;

class lightbulb {
 int watts_used;
 int lumens;
 int temperature;

public:
 lightbulb() {
  watts_used = 60;
  lumens = 500;
  temperature = 2700;
 }

 friend ostream& operator <<(ostream&, const lightbulb&);
};

ostream& operator <<(ostream& s, const lightbulb& b) {
 s << b.watts_used << " " << b.lumens << " " << b.temperature;
 return s;
}

int main() {
 lightbulb bulb;
 cout << bulb << endl;
}

http://www.thegreatcourses.com


199Lecture 17 | Object-Oriented Constructors and Operators

Exercise Solution

Click here to go back to the exercise.

Here's one way to implement that.

1 // Program 17_5
2 // Vending Machine constructor with multiple parameters
3 #include <iostream>
4 using namespace std;
5 
6 class vending_machine {
7 private:
8  float price;
9  float credit;
10  float money_collected;
11  int inventory;
12 
13 public:
14  vending_machine() {
15   price = 1.0;
16   credit = 0.0;
17   money_collected = 0.0;
18   inventory = 100;
19   cout << "Created a new vending machine." << endl;
20  }
21 
22  vending_machine(int starting_inventory) {
23   price = 1.0;
24   credit = 0.0;
25   money_collected = 0.0;
26   inventory = starting_inventory;
27   cout << "Created a new vending machine." << endl;
28  }
29 

30  vending_machine(float initial_price, int starting_inventory) {
31   price = initial_price;
32   credit = 0.0;
33   money_collected = 0.0;
34   inventory = starting_inventory;
35   cout << "Created a new vending machine with " << inventory 
36    << " items at a cost of " << price << " each." << endl;
37  }
38 
39  int number_remaining() {
40   return inventory;
41  }
42 
43 };
44 
45 int main()
46 {
47  vending_machine lobby_machine(50.0, 75);
48 }

http://www.thegreatcourses.com


200Lecture 17 | Object-Oriented Constructors and Operators

// QUIZ

1 Assume that you have a class called customer with a string member variable called name. What would the default constructor function be if it were setting the name to 

be unknown?

2 What is the output of the following code?

1 #include <iostream>
2 using namespace std;
3 
4 class configuration {
5  int setup;
6  public:
7  configuration () {
8   setup = 1;
9  }
10  configuration (int a, int b) {
11   setup = 2;
12  }
13  configuration (float a) {
14   setup = 3;
15  }
16  
17  void printwhich() {
18   cout << setup << endl;
19  }
20 };
21 
22 int main()
23 {
24  configuration item1(3.21);
25  configuration item2;
26  configuration item3(2, 4);
27  item1.printwhich();
28  item2.printwhich();
29  item3.printwhich();
30 }

3 Given the following class that describes a point, write 2 operators: 

a an addition operator that takes 2 points and 

returns a new point whose x and y values 

are the sum of the x and y values of the 2 

points.

b an output streaming operator so that a 

point, which should appear in the form 

(x, y), can be output.

Note that some main code is provided to show 

how the values can be used.

1 #include <iostream>
2 using namespace std;
3 
4 class point {
5  private:
6  float x;
7  float y;
8  public:
9  point () {
10   x = 0.0;
11   y = 0.0;
12  }
13  point (float a, float b) {
14   x = a;
15   y = b;
16  }
17  

18  point operator+(point p) {
19   return 

point(x+p.x, y+p.y);
20  }
21  
22  friend ostream& operator 

<<(ostream&, const point&);
23 };
24 
25 ostream& operator <<(ostream& 

os, const point& p) {
26  os << "(" << p.x << ", " << 

p.y << ")";
27 }
28 
29 int main()
30 {
31  point p1(10.0, 10.0);
32  point p2(4.0, 10.0);
33  point p3;
34  p3 = p1+p2;
35  cout << p3 << endl;
36 }

Click here to see the answers.

http://www.thegreatcourses.com


201Lecture 17 | Object-Oriented Constructors and Operators

// QUIZ ANSWERS

1 The constructor will be defined like a function with the name that is the 

same as the class—in this case, customer—with no return value. Because it 

is the default constructor, there is no parameter list. Inside the constructor, 

the variable name should be set to unknown. 

 customer () {
  name = "unknown";
}

2 The output would be:

3
1
2

Notice that the 3 variables are declared with 3 different constructors. The 

first variable uses the constructor that takes a floating-point parameter 

(and sets setup to 3); the second one uses the default constructor, which 

takes no parameters (and sets setup to 1); and the third one uses the 

constructor that takes 2 integer parameters (and sets setup to 2).

3  a For the + operation, you can either define the operator within the 

class or as a friend outside the class. If you define it inside the class, 

it can be done like this:

  point operator+(point p) {
   return point(x+p.x, y+p.y);
  }

  Notice that the result of the operation is a point. Because you define 

the operator inside the class, the first operand is assumed to be the 

point that the operator is a member of. 

 The second operand is another point (named p). Then, you just create 

a new point and return it. You use the constructor to set the point's 

values. Notice that the x value is set to be x+p.x and that y is similarly 

set: The x refers to the x member from the first operand, while the 

p.x is the x value for the second operand.

   A second option would be to declare a friend function within 

the class:

   friend point operator +(point, point);

  and then define the function outside the class:

   point operator +(point p1, point p2) {
    return point(p1.x+p2.x, p1.y+p2.y);
 }

b For the streaming operation, you need to define the operator as a 

friend operator outside the class. You must first declare it to be a 

friend within the class:

   friend ostream& operator <<(ostream&, const point&);

 Note that the return type is an ostream reference. The 2 operands are 

an ostream (like cout) and a point (using pass by const reference 

so that you don't copy the data and can use literals in the call if you 

wish). Then, outside the class, you can define the function itself, just 

outputting to the ostream:

   ostream& operator <<(ostream& os, const point& p) {
    os << "(" << p.x << ", " << p.y << ")";
 }

Click here to go back to the quiz.

http://www.thegreatcourses.com


202Lecture 18 | Dynamic Memory Allocation and Pointers

18
IN THIS LECTURE:

Dereferencing Pointers

Program 18_1

Program 18_2

Dynamic Memory Allocation

A Game of 20 Questions

Program 18_5

Destructor Functions

Vectors: An Alternative to Dynamic Memory Allocation

Quiz

Quiz Answers

Dynamic Memory Allocation 
and Pointers

// DEREFERENCING POINTERS

Main working memory comes in one of 2 
varieties: the stack or the heap.

 » The stack is static memory that you know and 

allocate as soon as you declare something. The 

stack stores all the variables and parameters.

 » The heap is for dynamic memory allocation—

for anything that's not known in advance and 

is instead allocated as needed. The heap is 

sometimes referred to more formally as the 

free store.

It's not uncommon to be uncertain as to how 
much memory you'll need. You use dynamic 
memory allocation whenever you want to 
store an uncertain amount of information that 
will keep coming in, and thus keep growing, 
over time. Often, classes hide this from you. 
The vector class hides how and where it's 
allocating new memory.

But vectors don't always fit the problem you 
have. Sometimes you need to allocate memory 
for yourself.

To allocate memory on the heap in this more 
dynamic way, you need a pointer, which is 
a variable that holds an address in memory. 
Usually, but not necessarily, there is some data 
at that point in memory, but keep in mind that 
the pointer variable does not store the data—
just the location where the data is.

You usually think of the computer's main working memory 
(the memory stored in RAM) as one uniform block of 
memory. Items you declare get space set aside for them 
ahead of time. This is known as static memory allocation, 
and it's how standard variables and parameters are 
stored. But as you start developing more complex objects, 
sometimes you want to allocate new memory during the 
program—memory you didn't know you'd need ahead of 
time. That's what dynamic memory allocation is for.

http://www.thegreatcourses.com


203Lecture 18 | Dynamic Memory Allocation and Pointers

However, a pointer also defines the type of 
thing that should be found at the address it 
contains.

A pointer is declared much like any other 
variable, but there is some syntax to get 
used to.

 » To create a pointer, you first list the type of the 

thing you're pointing to but then also include * 

(commonly read "star") after the type, indicating 

that this variable is going to contain an address 

where there's something of that type.

 » Once you've declared a pointer, you can assign 

it a particular memory address. To get the 

memory address of a variable, you put & in front 

of the variable's name. Think of the memory 

address as being like GPS coordinates.

 » Once you have a pointer declared and you've 

assigned a memory address, you can get the 

thing that it is pointing to—that is, the thing that 

is at that memory address—in a process known 

as dereferencing the pointer.

There are a few ways to dereference pointers. 
The most basic way is to use * in front of the 
pointer name.

In Program 18_1, you create an integer, x, 
that gets assigned the value 3 (8). This integer 
is a static variable.

Then, you create a new variable, y, that is a 
pointer to an integer (9). The pointer is not set 
to anything initially.

You assign y the address of x (10). In other 
words, y points to x.

When you output *y, then you are outputting 
the value that y is pointing to. In this case, the 
integer where it's pointing has the value 3, so 
you output 3 (11).

In the next line, you are assigning a value, 5, to 
the integer pointed to by y. So, the memory 
location that y is pointing to will get the value 
5. This is the same memory location that is 
used by x (12).

So, when you then print out the value of x, 
you see that x has the value 5 (13).

Another way you can dereference a pointer is 
to use an array operator and access element 0.

The reason this works is because an array is 
actually a pointer! The array variable holds the 
address where the first item of the array is 
stored. 

When you write [0], you are getting the value 
stored at the place the pointer is referring 
to. And if you write [1], you mean the thing 
stored one position in memory past the place 
the pointer is referring to.

So, Program 18_2 works identically to 
Program 18_1. The only difference is that 
instead of writing *y, you write y[0] (11, 12).

If you have a pointer to an object—but only 
to an object—there's a third way you can 
dereference pointers. You can access public 
member variables or public member functions 
by using ->, which looks like an arrow, so it's 
known as the arrow operation.

This is the same as if you dereferenced the 
pointer and then used a dot to access the 
member variable or function.

// Program 18_1
// Pointer example using *
#include <iostream>
using namespace std;

int main()
{
 int x = 3;
 int* y;
 y = &x;
 cout << *y << endl;
 *y = 5;
 cout << x << endl;
}

// Program 18_2
// Pointer example using [0]
#include <iostream>
using namespace std;

int main()
{
 int x = 3;
 int* y;
 y = &x;
 cout << y[0] << endl;
 y[0] = 5;
 cout << x << endl;
}

http://www.thegreatcourses.com


204Lecture 18 | Dynamic Memory Allocation and Pointers

POINTER ERRORS

Pointers are notorious for how many errors they can cause in programs. Pointer errors can be easy to make and really difficult to 
find when debugging. Yet there are cases when you do need to use pointers:

 » when you are reading in an unknown amount of data, or

 » when you need a lot of memory but the operating system, as it often does, has limited the amount that can be used on the stack.

Then, you need to allocate memory dynamically.

// DYNAMIC MEMORY ALLOCATION

Now that you have pointers, you can start to 
perform dynamic memory allocation.

The new command creates a new object on 
the heap and returns a pointer to that new 
object. To use the new command, you just 
write new followed by the type that you want 
to allocate. If there is a second constructor 
defined, in addition to the default constructor, 
you can invoke it by putting parentheses 
afterward, with the arguments you want to 
pass to the second constructor in parentheses.

If you want to allocate several of an object, 
you allocate an array on the heap. When you 
allocate an array, then after the variable name, 
you just put brackets with the size of the array 
you want inside.

When the array form of new is used, the 
default constructor is called for each of the 
elements.

Data stays on the heap until it is explicitly 
deallocated. Once you are done with 
whatever memory you allocated, you need 
to explicitly free it. Unlike the stack memory 
that is automatically freed when a function call 
completes, heap memory stays allocated until 
the end of the program—unless you free it.

To free memory on the heap, you use the 
delete command. You just write delete and 
give a pointer to the thing you want to delete. 
The allocated object will then be deleted from 
memory.

If you allocated an array, you have to instead 
use delete[] to delete the entire array that 
was allocated.

One other thing that's useful when setting up 
a default variable is a null pointer.

Sometimes, you have a pointer but don't 
want it to point to anything in particular; you 
just have it to use sometime later. In this case, 
you can set the pointer value to be the value 
NULL. The null pointer does not point to any 
usable memory location, but it functions as 
a special value you can have the program 
check when no value is what is needed.

http://www.thegreatcourses.com


b

c

a

205Lecture 18 | Dynamic Memory Allocation and Pointers

// A GAME OF 20 QUESTIONS

Let's create a 20 Questions type of game, in 
which you ask someone up to 20 true/false 
questions to try to guess what he or she is 
thinking of. For this game, you'll want to create 
a tree structure where every internal node is 
a question, and if the answer is true, you will 
head down one side of the hierarchy, and if 
the answer is false, you'll head down the other.

One way to do this is to generate a 
binary tree, where every node has at most 2 
children. Each of the leaf nodes in your game 
tree will be a guess—the thing you hope the 
person is thinking of.

If your program guesses incorrectly, and 
thereby loses, then the program will ask the 
person playing to volunteer a question that 
teaches it how to distinguish its guess from 
the person's item. That will let your game 
"learn" so that it can play better the next time. 
You'll create a new question node—which 
you'll allocate on the heap—and another new 
node for the new guess. In other words, the 
previous, wrong guess will be one child and 
the new node will be the other child of the 
question node.

During a game, the program might first ask Is 
it alive?. If the answer is No, then it asks Can 
you hold it in your hand?. If the answer 
is Yes, then the program might guess: Is it 
a rock?.

If that is not the correct answer and the 
correct answer was a pencil, the program 
would then ask the user What is a 
question to distinguish a rock from a 
pencil? and use the user's response, which 
might be Do you use it to write?, to 
update the tree.

You'll have a class named node, because each 
object that you create will be one node of the 
tree. The node is going to have 4 member 
variables (a).

The first of these is a Boolean, is_answer, 
which will be true if the node is an answer 
node and false if it's a question node.

Next, you'll have a string named text. For an 
answer node, this will be the thing you are 
going to guess. For a question node, it will be 
the question you ask to distinguish between 
the 2 items.

Finally, you'll have 2 pointers to more nodes: 
a pointer to the false_answer and a pointer 
to the true_answer. For a question node, one 
of these will be a pointer to the node that you 
should go to next if the answer to the question 
is Yes, and the other will be the one to go to if 
the answer is No.

You'll create 2 constructors. The default 
constructor (b) will create an answer node 
with the text value set to rock. So, it'll set 
is_answer to true and text to rock.

Both the false_answer pointer and the 
true_answer pointer will be set to NULL. This 
is an answer node, so there are no children 
and therefore nothing to point to.

The second constructor (c) will take in a string 
as a parameter. It'll again create an answer 
node such that is_answer is true and both 
pointers are NULL.

// Program 18_5
// 20 Questions Game
#include <iostream>
#include <string>
using namespace std;

class node {
 bool is_answer; // True if 
an "answer" node, False if a 
"question" node
 string text; // The answer 
for an answer node, the question 
otherwise
 node* false_answer;
 node* true_answer;

public:
 node() {
  is_answer = true;
  text = "rock";
  false_answer = NULL;
  true_answer = NULL;
 }

 node(string s) {
  is_answer = true;
  text = s;
  false_answer = NULL;
  true_answer = NULL;
 }

http://www.thegreatcourses.com


d

f

g

e

h

206Lecture 18 | Dynamic Memory Allocation and Pointers

The main part of the class will be the ask_
question member function. This is going to 
be the function to call to have the computer 
ask the question in that node—either trying 
to guess the answer or asking a question to 
narrow down choices.

The ask_question function will return true if 
the computer wins the game—the function will 
guess the answer—or return false if it doesn't 
win the game. The function will have 2 parts: 
one option if it's a node with a final guess and 
one if it's a node to ask another question.

If it is a node with a final guess, then you'll 
make a guess of what you think the player is 
thinking of. You output your guess, which is 
the text member variable (d).

You then read an answer from the user (e). If 
the answer is Yes, it means you guessed the 
correct thing, so you just return true, and 
the game is over (f). If your guess was not 
correct, you need to update your decision 
tree. You first find out what item the person 
was thinking of. This is going to become a new 
answer node (g).

You next ask the user to give you a question 
to distinguish your incorrect guess from 
the thing the user was thinking of (h). This 
question gets read in as an entire line, because 
it is not just one word. You use the getline 
command to read the question in.

Remember from lecture 9 that getline first 
reads any leftover carriage return that might 
have come after streaming in a variable as an 
entire line, so you have to call getline twice: 
once to get the new line that came from 
pressing Enter after typing the name of the 
thing the user was thinking of, and another line 
will read in the new thing the user wrote.

 bool ask_question() {
  if (is_answer) {
   // This is an answer node. 
   // Guess the answer, and if it's wrong, generate new nodes
   cout << "OK, I'm ready to guess: is it " << text << "? (Answer Yes or No): ";
   string answer;
   cin >> answer;
   if ((answer == "Yes") || (answer == "yes") || (answer == "y") || 
    (answer == "Y")) {
    return true;
   }
   else {
    cout << "What were you thinking of? ";
    cin >> answer;
    cout << "Help me learn.  What is a question that would help me distinguish "
     << text << " from " << answer << "? " << endl;
    cout << " (The answer to the question should be Yes for " << answer 
     << " and No for " << text << ".)" << endl;
    string question;
    getline(cin, question);
    getline(cin, question);

http://www.thegreatcourses.com


j

k

l

i

207Lecture 18 | Dynamic Memory Allocation and Pointers

Following this, you're going to create 2 new 
children nodes (i). Both of these will be 
answer nodes. You use the new command 
to create a new node, using the constructor 
to give the answer text to use for each. The 
new command allocates a new node on the 
heap, and the constructor initializes that node 
appropriately. One of the nodes will have the 
new item as an answer, and the other one will 
have the existing answer.

Then, you update the current node (j). Instead 
of this node being an answer node, it will be a 
question node, so you change the text to be 
the question that you just read in and set is_
answer to false. This designates that it's now 
a question node that can be used to ask the 
question and go to one of the 2 answer nodes: 
either the new one you just learned of or the 
answer that you previously had in this node. 
So, next time you play the game, instead of 
guessing the wrong answer, you'll instead ask a 
question to distinguish your answers.

Finally, you return false (53). You did not 
guess the thing the person was thinking of, so 
you did not win the game.

On the other hand, you need to handle the 
case where you have a question node. In this 
case, the operation is relatively simple. You 
print out the question and get a Yes or No 
answer from the user (k).

If the user answered Yes, then you call ask_
question on the node pointed to by the 
true _answer pointer. Otherwise, you call 
ask_question on the node pointed to by the 
false_answer pointer. In either case, you just 
return whatever the result of that node is (l). 

Basically, you go down to the next level of the 
tree and again ask a question there—either 
making a guess if it's an answer node or asking 
another question if it's a question node. This 
will continue until you eventually reach a leaf of 
the tree, where you'll have an answer node.

This final operation is an example of recursion, 
which refers to a function calling itself. In this 
case, the member function ask_question 
was calling ask_question again, though this 
time on a different node. Once you are at a 
node, you treat the remaining tree just like 
you would the original tree; in other words, 
for any one question node, the subtrees are 
themselves trees.

    true_answer = new node(answer);
    false_answer = new node(text);
    text = question;
    is_answer = false;
    return false;
   }
  }
  else {
   // This is a question node.  Ask the question, get the answer, and 
go to a child
   cout << text;
   cout << " (Answer Yes or No): ";
   string answer;
   cin >> answer;
   if ((answer == "Yes") || (answer == "yes") || (answer == "y") ||
    (answer == "Y")) {
    return true_answer->ask_question();
   }
   else {
    return false_answer->ask_question();
   }
  }
 }
};

http://www.thegreatcourses.com


m

208Lecture 18 | Dynamic Memory Allocation and Pointers

The only thing left is the main program 
that actually runs your game. You start the 
game by creating a node, with the default 
constructor, named firstnode (75), which 
will create an answer node with the guess 
rock. So, the game will always start the first 
time with the computer guessing that the user 
is thinking of a rock.

Then, you will repeatedly ask the user if he 
or she wants to play the game, and as long 
as the user keeps answering Yes, you play 
another round (m).

Each time, to play the game, you just call ask_
question on firstnode (82). Depending on 
whether you get a true or a false returned, 
you either celebrate winning the game (83) or 
sulk that you've lost (86).

Assuming the computer doesn't win, the 
more you play the game, the bigger the tree 
will get—that is, the more your program will 
"learn." In principle, you could go on until the 
computer runs out of memory; in practice, the 
computer will eventually win or you'll run out 
of time to play. Dynamic allocation of memory 
gives you the potential to expand without limit.

Dynamic memory allocation is something you need to keep in mind if

 » you need to allocate an amount of memory that you cannot predict ahead of 
time, or

 » the memory you need has a special structure, such as the binary tree used in the 20 
Questions game.

int main()
{
 node firstnode;

 cout << "Would you like to play 20 questions? ";
 string answer;
 cin >> answer;
 while ((answer == "Yes") || (answer == "yes") || (answer == "y") || 
  (answer == "Y")) {
  if (firstnode.ask_question()) {
   cout << endl << "I won!!!" << endl;
  }
  else {
   cout << endl << "OK, I guess I lost..." << endl;
  }
  cout << "Would you like to play again? ";
  cin >> answer;
 }
}

http://www.thegreatcourses.com


209Lecture 18 | Dynamic Memory Allocation and Pointers

// DESTRUCTOR FUNCTIONS

Destructors are functions that are called 
when it is time for an object to be removed 
from memory. The destructor function is 
meant to "clean up" when it's time to get rid 
of an object. In code, a destructor is declared 
just like constructor functions, except that a 

destructor starts with a tilde (~), after which 
comes the class name and parentheses with 
no parameters.

In particular, the destructor is the place to 
delete previously allocated dynamic memory. 
For example, your 20 Questions program 
keeps all the memory you allocated until the 
end of the program.

It is always good practice to free up any 
allocated memory in the same object that 
created it. This means that when it's time to 

delete a node, you also need to delete its 
children branches, so you should define a 
destructor in this case.

The destructor will only need to call delete on 
the children if it is a question node, because 
answer nodes don't have any children, so you 
first check to see if it's a question node. If so, 
you'll call delete on each of the children. The 
destructor will then be called on those nodes, 
which will call the destructors on their children, 
and so on, all the way through the tree.

// VECTORS: AN ALTERNATIVE TO DYNAMIC MEMORY ALLOCATION

Vectors are a way of indirectly allocating data 
on the heap without having to use pointers or 
the allocating and destructor commands for 
new and delete. All that work is hidden inside 
the vector class.

When a vector is first created, there is enough 
space allocated on the heap to hold all the data 
in the initialization, plus a little more. As you 
keep adding elements onto a vector, eventually 
the memory that was allocated gets used up.

But when the vector is finally "full," where 
it's used all the memory that was already 
allocated, it then goes through a process to 

get more. It allocates double the amount of 
memory, copies all the old data into this new 
memory, and then deletes the old memory. 
Now it has twice as much memory to work 
with, so it should take even longer before that 
memory fills up. This can keep going as long 
as more data keeps being added to a vector.

If you find yourself wondering whether you 
should use a vector or write your own dynamic 
memory allocation, then use the vector! With a 
vector, you're still using the heap, but it's a little 
easier to use, and you're much less likely to run 
into major errors or problems that people tend 
to encounter when using pointers. 

~node() {
  if (!is_answer) {
   delete false_answer;
   delete true_answer;
  }
}

READINGS
a Stroustrup, Programming Principles and 

Practice Using C++, sections 17.4, 17.5, 
and 17.9.

b Lippman, Lajoie, and Moo, C++ Primer, 
chap. 12.

http://www.thegreatcourses.com


210Lecture 18 | Dynamic Memory Allocation and Pointers

// QUIZ

1 Are the following true or false?

a Dynamic memory is sometimes called 

the stack.

b A "normal" variable declaration, such as 

int a;, is an example of dynamic memory 

allocation.

c Some classes hide dynamic memory 

allocation from the user.

d Dynamic memory allocation should be used 

as often as static memory allocation.

2 Which one/ones of the following is/are a good 

reason you might want a destructor for a class?

a You have private member variables.

b Your class dynamically allocated memory.

c You want to notify other objects that this is 

being destroyed.

3 Assume you have a class testclass, 

defined below:

class testclass {
 public:
 int x;
 
 testclass() {
  x=0;
 }
 testclass(int a) {
  x = a;
 }
 
 void print() {
  cout << x << endl;
 }
};

How would you do each of the following?

a Declare a pointer to a testclass object, 

named p.

b Dynamically allocate a testclass object 

and assign it to p using the default 

constructor (there are at least 2 possible 

solutions).

c Dynamically allocate a testclass object 

with the parameter 5 and assign it to p.

d Dynamically allocate an array of 5 

testclass objects and assign the array to p.

e Call the print function for the object 

pointed to by p (there are at least 3 possible 

solutions).

f Destroy the object(s) pointed to by p.

Click here to see the answers.

http://www.thegreatcourses.com


211Lecture 18 | Dynamic Memory Allocation and Pointers

// QUIZ ANSWERS

1 a False. Dynamic memory is also known as the heap or the free store; 

the stack is used to refer to static memory.

b False. Those "normal" declarations are for variables you know exist at 

compile time. They are allocated in static memory; dynamic memory is 

allocated when you use new to set aside memory during a program's 

execution that was not necessarily known ahead of time.

c True. The vector class is one example. It is performing dynamic 

memory allocation to grow as needed when additional items are 

pushed onto the back of the vector.

d False. Dynamic memory allocation has the potential for creating 

numerous bugs, security flaws, and general program instability. It 

is better to use static memory when feasible and to use dynamic 

memory allocation when you need to. An example of when you 

might need to is when you are dealing with an indeterminate amount 

of data.

2 a No. This is not a good reason on its own. Whether variables are 

private or public does not really matter as far as whether a destructor 

is needed.

b Yes. This is typically a main reason a destructor is used. A destructor 

will typically free the memory that was dynamically allocated for that 

object so that it does not stay allocated when the object is deleted.

c Yes. This is a reason to implement a destructor. If other objects are 

pointing to this object, then when it is deleted, they could have a bad 

pointer. The destructor might include code that tells those objects that 

this one is being deleted.

3 a testclass* p;

The * indicates that the new variable will be a pointer to something of 

that type.

b Here are 2 options:

 p = new testclass;
  OR

 p = new testclass();
 

In either case, the default constructor is called.

c p = new testclass(5);

By giving arguments when allocating the object, the corresponding 

constructor is called for that object. 

d p = new testclass[5];

This allocates an array of 5 objects, each initialized with the default 

constructor.

e Here are 3 equivalent options:

 p->print();
 (*p).print();
 p[0].print();
 

In each case, the pointer is dereferenced to get the object it is 

pointing to and then the function is called for that object.

http://www.thegreatcourses.com


212Lecture 18 | Dynamic Memory Allocation and Pointers

f There are 2 ways to do this. If there is just a single object pointed to by p (i.e., only one object was allocated), then you call the following:

 delete p;
 

Otherwise, if you allocated an array of objects, you should instead call the following:

 delete[] p;
 

The delete command deallocates the memory that was assigned to that object after calling the destructor (if there is one; in this case, there is not).

Click here to go back to the quiz.

http://www.thegreatcourses.com


213Lecture 19 | Object-Oriented Programming with Inheritance

19
IN THIS LECTURE:

Inheritance

Program 19_1

Program 19_2_a

Program 19_3

The Protected Category

Program 19_4

Constructors with Inheritance

Program 19_5

Quiz

Quiz Answers

Object-Oriented Programming 
with Inheritance

The most important idea of object-oriented programming is 
encapsulation, which is the wrapping of data and functions together 
in one tidy package. Another powerful idea is inheritance, which is 
the idea that you should be able to create classes that can inherit 
this encapsulation of member variables and functions from another 
class. In short, you can use an abstraction you already have to create 
one or more new abstractions. This creates a hierarchy: Objects can 
inherit from a "parent," and the relationships among various inheriting 
objects can form a tree structure.

// INHERITANCE

Inheritance offers several benefits.

 » It prevents having to rewrite the same code over 

and over. An ancestor can pass on properties to 

all of its offspring. In terms of coding, this can 

save you a lot of time and work.

 » It reduces the number of places that bugs could 

be introduced to the program, so you reduce 

debugging time.

 » It enables polymorphism, which you'll learn 

about in the next lecture.

In practice, there are a few ways that 
inheritance works.

From a top-down viewpoint, object-oriented 
inheritance can be thought of as a way of 
taking a more general idea and dividing it 
into more specialized ideas. But inheritance 
can also work from a bottom-up viewpoint, 
where you start with the offspring and decide 
what sort of ancestor they have in common. 
Whether top-down or bottom-up, the end 
result is a similar arrangement of classes.

Inheritance plays a powerful role in 
object-oriented design. It lets you 
define something a single time in 
one class and then use it in multiple 
other classes. It means that you can 
define a new class, and rather than 
writing every piece of it from scratch, 
you can start with everything already 
defined in another class.

Inheritance also creates a hierarchy 
of classes—a relationship between 
ancestors and descendants.

http://www.thegreatcourses.com


a

b

c

214Lecture 19 | Object-Oriented Programming with Inheritance

TERMINOLOGY

There are different terminologies 
that are sometimes used to describe 
the relationships between different 
classes in a class hierarchy.

Following the terminology used 
for trees, you may refer to a parent 
class and child class. One parent can 
have several children, also known as 
offspring.

A superclass is the class above a point 
in the hierarchy, and a subclass is a 
class below a point in the hierarchy. 
A superclass encompasses many 
different classes, while a subclass is a 
narrower description of a class.

The base class is effectively the 
parent, and the derived class is 
the child.

For the most part, if you hear the 
terms parent class, superclass, or base 
class, they probably mean the same 
thing. And if you hear the terms child 
class, subclass, or derived class, they 
probably mean the same thing.

You've already seen a few areas in which 
inheritance is used to define classes. One 
important area involves streams. You've seen 
streaming to and from the console, to and 
from files, and to and from strings. All of these 
are basically derived classes that inherit from a 
more general stream base class.

A second area of inheritance you've already 
encountered is exceptions, which are used to 
cause a function to exit when an exceptional 
case is encountered. There is a very general 
exception class and then more specialized 
child classes, each of which has even more 
specific classes.

In this example, you have a general class, the 
product. Products contain floating-point 
member variables for both a wholesale cost 
and a retail cost (a).

Then, there is a separate class created 
for a more specific product: the cup. The 
cup has 2 member variables of its own: a 
volume that the cup holds and a color for 
the cup, represented as a float and a string, 
respectively (b).

The key difference here from what you've 
seen before is that the cup is also defined 
to be a child of the product. You see this by 
the : public product placed right after 
the class name. Because this is the case, the 
cup inherits the member variables from the 
product class.

Then, in the main routine, you can define a 
cup object, named plastic_cup. This will let 
you set not just the volume and color, but also 
the wholesale and retail costs for the cup. You 
do this by assigning values to plastic_cup.
wholesale_cost and plastic_cup.retail_
cost, the same as you would the other 
member variables, plastic_cup.volume and 
plastic_cup.color (c).

// Program 19_1
// Inheritance Example
#include<iostream>
#include<string>
using namespace std;

class product {
public:
 float wholesale_cost;
 float retail_cost;
};

class cup : public product {
public:
 float volume;
 string color;
};

int main() {
 cup plastic_cup;
 plastic_cup.wholesale_cost = 0.10;
 plastic_cup.retail_cost = 0.30;
 plastic_cup.volume = 16.0;
 plastic_cup.color = "red";

 cout << "The plastic cup costs " 
<< plastic_cup.wholesale_cost 
  << " to purchase and sells for 
" << plastic_cup.retail_cost << endl;
}

http://www.thegreatcourses.com


d

e

215Lecture 19 | Object-Oriented Programming with Inheritance

To keep things simple, let's assume that 
everything is public.

When creating a class, if you want to inherit 
from some other class, you declare the class 
as usual, but you have a colon, an access 
statement like public or private, and then 
the name of the parent class.

In Program 19_2a, because you wanted to 
create a cup class that was derived from the 
product class, you would write class cup : 
public product and then the class definition 
in curly braces (13).

You can also inherit in a larger class hierarchy. 
For example, say you wanted to further 
distinguish your cups so that some of them 
were specifically measuring cups. You could 
make a new class, a measuring_cup class. 
It would inherit from cup, so you'd write 
class measuring_cup : public cup in the 
declaration (19).

That means that it inherits the features of 
the cup class, which therefore means it also 
inherits the features of the product class. It 
can also define its own member variables and 
functions. In this case, you can define 2 new 
variables for the measuring_cup: a Boolean 
to note whether it is in metric or English units 
and an integer number of gradations (d). 
Thus, a measuring_cup actually has access 
to 6 different member variables: the 2 that it 
defined for measuring, the 2 that were defined 
in the cup class, and the 2 that were defined in 
the product class (e).

// Program 19_2_a
// Inheritance Example - multiple levels of inheritance
#include<iostream>
#include<string>
using namespace std;

class product {
public:
 float wholesale_cost;
 float retail_cost;
};

class cup : public product {
public:
 float volume;
 string color;
};

class measuring_cup : public cup {
public:
 bool metricunits;
 int num_gradations;
};

int main() {
 measuring_cup plastic_cup;
 plastic_cup.wholesale_cost = 0.10;
 plastic_cup.retail_cost = 0.30;
 plastic_cup.volume = 1000.0;
 plastic_cup.color = "clear";
 plastic_cup.metricunits = true;
 plastic_cup.num_gradations = 10;

 cout << "The plastic cup costs " << plastic_cup.wholesale_cost 
  << " to purchase and sells for " << plastic_cup.retail_cost << endl;
 cout << "It is " << plastic_cup.color << " in color and has a volume of "
  << plastic_cup.volume << endl;
 if (plastic_cup.metricunits) { 
  cout << "It has a total of " << plastic_cup.num_gradations 
   << " markings in metric units." << endl;
 }
 else {
  cout << "It has a total of " << plastic_cup.num_gradations  
   << " markings, in English units." << endl;
 }
}

http://www.thegreatcourses.com


f

g

h

216Lecture 19 | Object-Oriented Programming with Inheritance

And, just as you'd expect from a hierarchy, you 
can have more than one derived class from 
the same base class. For example, in addition 
to a measuring_cup, you could define a 
drinking_cup. In Program 19_3, it's been 
defined as a subclass of cup, with one more 
member variable: a Boolean denoting whether 
it has a lid or not (f).

You're not confined to inheriting just member 
variables; you also inherit member functions.

Say your product class had a member function 
named profit_per_unit. It would be a simple 
function, just returning the difference between 
the retail and wholesale prices (g).

Then, if you have an object of some derived 
type, such as a measuring_cup, you can call 
that function on the measuring_cup, just like 
you would for the base class. In this example, 
you are able to have a measuring_cup object 
named plastic_cup, and you call plastic_
cup.profit_per_unit to get the profit (h).

Inheritance only goes one way—from 
the parent to the child. A superclass 
does not have access to the member 
variables and functions of the 
subclasses, and sibling classes don't 
have access to each other's variables.

// Program 19_3
// Inheritance Example - inheriting member functions
#include<iostream>
#include<string>
using namespace std;

class product {
public:
 float wholesale_cost;
 float retail_cost;

 float profit_per_unit() {
  return retail_cost - wholesale_cost;
 }
};

class plate : public product {
public:
 float diameter;
};

class cup : public product {
public:
 float volume;
 string color;
};

class measuring_cup : public cup {
public:
 bool metricunits;
 int num_gradations;
};

class drinking_cup : public cup {
public:
 bool has_lid;
};

int main() {
 measuring_cup plastic_cup;
 plastic_cup.wholesale_cost = 0.10;
 plastic_cup.retail_cost = 0.30;
 plastic_cup.volume = 1000.0;
 plastic_cup.color = "clear";
 plastic_cup.metricunits = true;
 plastic_cup.num_gradations - 10;

 cout << "The plastic cup costs " << plastic_cup.wholesale_cost
  << " to purchase and sells for " << plastic_cup.retail_cost << endl;
 cout << "We make a profit of " << plastic_cup.profit_per_unit()
  << " on each one." << endl;
}

http://www.thegreatcourses.com


i

217Lecture 19 | Object-Oriented Programming with Inheritance

// THE PROTECTED CATEGORY

Up until this point, the examples have had all 
of the member variables be public. But, as 
discussed when encapsulation was introduced, 
the idea of information hiding—of not allowing 
outsiders access to more information than 
they need—is important to creating good 
classes. It helps ensure that a class's member 
variables are only modified in approved ways, 
so you declare some member variables as 
private and some as public.

When it comes to inheritance, there's a third 
category that's in between public and private: 
protected.

As before, things that are public will get 
inherited by all of the descendants and be 
public members of all those descendants. 
Any code can call those member functions or 
access those member variables directly.

The private member properties are accessible 
only to the class they are declared in, and 
no others. Not even the descendants of a 
class can access those member properties 

that are considered private. So, although the 
descendants still inherit those variables and 
functions—that is, they still allocate space for 
those member variables and can have values 
stored there—they can't actually call the 
private functions or read the private variables 
defined in an ancestor.

This is the reason for the protected category. 
Protected member properties are accessible 
to the class they're declared in and to the 
descendants, but nothing outside of the class. 
In effect, this is like a private member property 
for everything following in the inheritance tree.

Let's say you create a bank_account class 
that can be used to keep track of different 
bank accounts. You'll have a base class 
called bank_account and 2 derived classes, 
checking_account and savings_account.

The bank_account class is declared just like 
any other class (7). It's not inheriting from 
anything.

Within the bank_account class will be 3 
groups of member properties. First, you have 
private member properties (i), which in this 
case are the owner's name, address, and 
account number. Because these are private, 
that means that the derived classes, which 
will be checking_account and savings_
account, will have access to those member 
variables but won't be able to access them 
directly. The only way they'll be able to access 
these variables is indirectly, through a member 
function inherited from bank_account. No 
other classes outside bank_account will be 
able to access them directly, either.

Exercise 1

Click here to see the solution.

Let's say that in addition to cups, you wanted to sell plates. Create a new type of product, a plate, that includes a diameter 
measure.

// Program 19_4
// Inheritance Example: Public/
Protected/Private
#include<iostream>
#include<string>
using namespace std;

class bank_account {
private:
 string owner_name;
 string owner_address;
 long long int account_number;

http://www.thegreatcourses.com


l

j

m

n

k

218Lecture 19 | Object-Oriented Programming with Inheritance

You also have a couple members 
declared protected (j). There 
is a protected variable: a double-
precision floating-point number 
named balance. There's also 
a protected function: a set_
account function that sets the 
account number and the balance.

Because the balance variable 
and the set_account function 
are protected, any subclasses you 
might define under bank_account 
will be able to access them; that 
is, the subclasses will be able to 
modify the balance directly and 
call the set_account function. 
But no other classes—and no code 
outside of the bank_account 
subclasses—will be able to access 
protected variables or functions. 
No outside code can call set_
account, and no outside code can 
look at or modify the balance.

Then, you have a few public 
functions (k): One lets the account 
name and address be changed, 
and the other prints out the 
account information. Notice that 
because both of these are public, 
they can be called from anywhere. 
Any other code, from any class or 
function, can call either of these 2 
public functions.

Now that your bank_account 
class is all set up, you can turn 
to subclasses. Suppose you have 
a checking_account class and 
a savings_account class, each 
of which inherits from bank_
account, as specified with 
the : public bank_account 
designation (l).

First, let's look at a way to 
implement the checking_
account, which has a few public 
functions. One of these, called 
begin_account, is used to 
indicate that a new account is 
starting. It just calls set_account. 
Because begin_account is part of 
the checking_account class and 
the checking_account inherited 
from bank_account, it is able to 
call the set_account function that 
was a protected function of bank_
account (m).

The checking_account also has 
functions to deposit and withdraw 
money. Each of these refers to the 
protected balance variable that 
is inherited from bank_account. 
Again, because this class inherits 
from bank_account, it can 
access the protected member 
properties (n).

protected:
 double balance;

 void set_account(long long int acctnum, double 
startbalance = 0.0) {
  account_number = acctnum;
  balance = startbalance;
 }

public:
 void update_owner(string name, string address) {
  owner_name = name;
  owner_address = address;
 }

 void print_account_info() {
  cout << "Account: " << account_number << endl;
  cout << "Current Balance : " << balance 
<< endl;
  cout << "Owner: " << owner_name << endl;
  cout << "Address: " << owner_address << endl;
 }
};

class checking_account : public bank_account {
public:
 void begin_account(long long int num, 
double amt) {
  set_account(num, amt);
 }

 void deposit(double amt) {
  balance += amt;
 }

 double withdraw(double amt) {
  if (balance >= amt) {
   balance -= amt;
   return amt;
  }
  else {
   return 0;
  }
 }
};

class savings_account : public bank_account {

http://www.thegreatcourses.com


o

219Lecture 19 | Object-Oriented Programming with Inheritance

In the savings_account class, there's a 
private member variable, interest_rate 
(58). Remember that for classes, if you don't 
declare it as public, private, or protected, 
it's assumed to be private. But just to be 
especially clear, let's explicitly declare it private 
by putting private: beforehand.

You also have 2 public member functions 
that you might want to invoke from outside 
the class: begin_account and generate_
interest. Like the checking_account, these 
access the protected function set_account 
and the protected variable balance that are 
inherited from the bank_account (o).

If you then, in your main code, want to work 
with some individual's accounts, you can 
declare both a checking_account and a 
savings_account object for that person. 
In this case, you can have accounts named 
Holmes_checking and Holmes_savings, 
and you can call any of the public member 
functions on them. So, you can call begin_
account defined in the checking_account or 
savings_account class. You can call deposit 
and withdraw on the checking_account 
or generate_interest on the savings_
account. Or you can call update_owner and 
print_account, functions that were defined 
in the base class bank_account.

All of this runs fine. Within any class, you are 
accessing only functions and variables that 
were either defined in that class or were public 
or protected properties from an ancestor. 
From outside of the classes, you are only 
accessing public properties of the class.

But there are several things you would not be 
allowed to do. You could not access a private 
member variable of the parent class, and you 
could not access any private member function 
from outside the class.

private:
 double interest_rate;

public:
 void begin_account(long long int num, double amt, double rate) {
  set_account(num, amt);
  interest_rate = rate;
 }

 void generate_interest() {
  balance = balance + interest_rate * balance;
 }
};

int main() {
 checking_account Holmes_checking;
 savings_account Holmes_savings;
 Holmes_checking.begin_account(11122233, 100.0);
 Holmes_checking.update_owner("Sherlock Holmes", "221B Baker St., London");
 Holmes_savings.begin_account(99988877, 500.0, 0.03);
 Holmes_savings.update_owner("Sherlock Holmes", "221B Baker St., London");

 Holmes_checking.deposit(50.0);
 Holmes_checking.withdraw(25.0);
 Holmes_savings.generate_interest();

 Holmes_checking.print_account_info();
 Holmes_savings.print_account_info();
}

http://www.thegreatcourses.com


p

q

220Lecture 19 | Object-Oriented Programming with Inheritance

// CONSTRUCTORS WITH INHERITANCE

When using inheritance, constructors for the 
most part work much like all the constructors 
you've seen before, but it can be tricky to 
handle constructors when you're inheriting 
some of your properties and don't have direct 
access to them.

The way to think of this is that when you call a 
constructor in a derived class, you need to first 
have a constructor for the base class. After 
all, the derived class is only adding additional 
stuff onto whatever was in the base class. So, 
first you need to have the base class set up, 
and then you can add on whatever additional 
things are needed for the derived class.

The way this is done is that when a 
constructor is defined, you put a colon 
after the constructor declaration, giving the 
constructor to use for the base class.

For example, let's define 2 constructors for 
the base bank_account. First, you'll have 
a default constructor that basically sets 
everything to empty strings or to 0 (p). Then, 
you'll have a constructor that takes in all the 
various parameters needed to initialize all the 
member variables to specific values. In this 
case, there are 4 parameters: for the owner's 
name, owner's address, account number, and 
starting balance. You use these parameters to 
initialize the various member variables of the 
bank_account class. All of this is just like you 
would have had for any other constructor (q).

// Program 19_5
// Inheritance Example: Constructors
#include<iostream>
#include<string>
using namespace std;

class bank_account {
private:
 string owner_name;
 string owner_address;
 long long int account_number;

protected:
 double balance;

 void set_account(long long int acctnum, double startbalance 
= 0.0) {
  account_number = acctnum;
  balance = startbalance;
 }

public:
 bank_account() {
  owner_name = "";
  owner_address = "";
  account_number = 0;
  balance = 0.0;
 }

 bank_account(string name, string address, long long int num, 
double bal) {
  owner_name = name;
  owner_address = address;
  account_number = num;
  balance = bal;
 }

http://www.thegreatcourses.com


r

s

221Lecture 19 | Object-Oriented Programming with Inheritance

Now let's look at the constructors for the 
derived classes, the checking and savings 
accounts. For a checking_account, there 
are no new member variables. So, the 
checking_account constructor doesn't 
need to do anything more than call the base 
class bank_account constructor. You define 
2 constructors for checking accounts: one 
default one and one with the 4 parameters 
needed to initialize a bank_account.

For the default constructor, you write 
checking_account() : bank_account() 
and then a few curly braces with nothing 
inside (r). That : bank_account with 
no arguments in the parentheses means 
that when this default checking_account 
constructor is called, it will first call the bank_
account constructor with no arguments. In 
other words, it calls the default bank_account 
constructor first. There's nothing in the curly 
braces, so nothing more is done.

Likewise, for the other constructor, you'll 
call the bank_account constructor with 
4 parameters (s). Again, there won't be 
anything in the curly braces. You just define 
the checking_account constructor to take in 
4 parameters and then write : bank_account 
and, in the parentheses, pass on those same 4 
parameters as arguments to the constructor. 
This will call the non-default bank_account 
constructor with those arguments and then do 
whatever is in the curly braces, which in this 
case is nothing.

 void update_owner(string name, string address) {
  owner_name = name;
  owner_address = address;
 }

 void print_account_info() {
  cout << "Account: " << account_number << endl;
  cout << "Current Balance : " << balance << endl;
  cout << "Owner: " << owner_name << endl;
  cout << "Address: " << owner_address << endl;
 }
};

class checking_account : public bank_account {
public:

 checking_account() : bank_account() {
 }

 checking_account(string name, string address, long long int num, 
  double bal) : bank_account(name, address, num, bal) {
 }

 void begin_account(long long int num, double amt) {
  set_account(num, amt);
 }

 void deposit(double amt) {
  balance += amt;
 }

 double withdraw(double amt) {
  if (balance >= amt) {
   balance -= amt;
   return amt;
  }
  else {
   return 0;
  }
 }
};

http://www.thegreatcourses.com


t

u

v

222Lecture 19 | Object-Oriented Programming with Inheritance

With the savings_account, there is one more member variable. You'll again 
define 2 savings_account constructors, just like for the checking_account. 
Everything will be the same about these, except that the member variable 
interest_rate will need to be set in each constructor. The default constructor 
just sets this member variable to 0.0 after calling the default bank_account 
constructor (t). The other constructor takes in 5 parameters and passes 4 of 

those on as arguments to the 
bank_account constructor. 
Then, it uses the fifth 
parameter to initialize the 
interest_rate, inside the 
curly braces (u).

You can see that if you declare 
instances of the checking_
account and savings_
account variables with the 
non-default constructors, you 
do get everything initialized 
correctly (v). 

When you are defining a constructor 
in a derived child class, you probably 
need to make use of the constructor 
in the parent class to fully initialize an 
object. In particular, if the parent has 
any private member variables, the 
way you'll initialize those is by using 
the parent's constructor, because 
the derived class can't access those 
variables itself.

Exercise 2

Click here to see the solution.

Say you owned a store called Everything Wrists that sold wrist 
accessories, such as bracelets, watches, fitness trackers, and rubber 
wristbands. You want to keep track of your products, so you'll put 
together some classes that can be used to describe products.

Think of the classes you might want, including which ones might 
inherit from others. What data might each class contain? How might 
you go about implementing a few of those classes?

class savings_account : public bank_
account {
 double interest_rate;

public:
 savings_account() : bank_account() {
  interest_rate = 0.0;
 }

 savings_account(string name, string 
address, long long int num, double bal, 
  double rate) : bank_account(name, 
address, num, bal) {
  interest_rate = rate;
 }

 void begin_account(long long int 
num, double amt, double rate) {
  set_account(num, amt);
  interest_rate = rate;
 }

 void generate_interest() {
  balance = balance + interest_rate 
* balance;
 }
};

int main() {
 checking_account my_checking("John 
Keyser", "123 Any St., Anytown, TX 
77777", 
  11122233, 100.0);
 savings_account my_savings("John 
Keyser", "123 Any St., Anytown, TX 
77777", 
  99988877, 500.0, 0.03);

 my_checking.print_account_info();
 my_savings.print_account_info();
}

http://www.thegreatcourses.com


223Lecture 19 | Object-Oriented Programming with Inheritance

Click here to go back to the exercise.

READINGS
a Stroustrup, Programming Principles and Practice Using C++, 

chaps. 12 and 13.

b Lippman, Lajoie, and Moo, C++ Primer, sections 15.1 and 15.2.

Exercise 1 Solution

Click here to go back to the exercise.

Here's one way that could have been implemented.

 class plate: public product {
  public:
  float diameter;
 };

Exercise 2 Solution

Here's one option. You could come up with lots of data and many ways to organize this.

1 // Program 19_6
2 // Everything Wrists store example
3 #include <iostream>
4 #include <string>
5 using namespace std;
6 
7 class accessory {
8 public:
9  float cost;
10  float sale_price;
11 
12  // Default constructor
13  accessory() {
14   cost = 0.0;
15   sale_price = 0.0;
16  }
17 
18  // Non-default constructor
19  accessory(float c, float p) {
20   cost = c;
21   sale_price = p;
22  }
23 };
24 

25 class rubber_wristband : public 
accessory {

26 public:
27  string color;
28  string message;
29 
30  // Default constructor
31  rubber_wristband() : 

accessory() {
32   color = "";
33   message = "";
34  }
35 
36  // Non-default constructor
37  rubber_wristband(float c, float 

p, string col, string mess) : 
accessory(c, p) {

38   color = col;
39   message = mess;
40  }
41 };
42 

43 int main()
44 {
45  rubber_wristband birthday_

band(0.20, 2.00, "Yellow", "It's My 
Birthday!");

46  rubber_wristband bridges_
band(0.20, 0.50, "Black",

47   "Support Bridges - your life 
depends on them!");

48 }

http://www.thegreatcourses.com


224Lecture 19 | Object-Oriented Programming with Inheritance

// QUIZ

1 Imagine you have 3 different classes:

Class A

Class B, which inherits from class A

Class C, not related to classes A or B

a If the member of Class A is private:

i Is it accessible from Class B? 

ii Is it accessible from Class C?

b If the member of Class A is protected: 

i Is it accessible from Class B? 

ii Is it accessible from Class C?

c If the member of Class A is public: 

i Is it accessible from Class B?

ii Is it accessible from Class C?

2 Imagine you want the following classes, each with a set of member variables, as listed. How might you use 

inheritance to group these together in a hierarchy of classes? In other words, what new classes might you 

create that would allow you to group all of these together in one hierarchy?

 » Shopping Center: Appraised Value, Square Feet, Rental Price per Square Foot, Length of 

street frontage

 » Restaurant: Appraised Value, Square Feet, Rental Price per Square Foot, Kitchen area, 

Dining area

 » Office Building: Appraised Value, Square Feet, Rental Price per Square Foot, Number of 

exterior entries

 » Industrial Facility: Appraised Value, Square Feet, Rental Price per Square Foot, Number 

of loading docks

 » Single-Family House: Appraised Value, Square Feet, Number of people who can live there, 

Yard Size, Number of bedrooms and bathrooms

 » Multiplex: Appraised Value, Square Feet, Number of people who can live there, Yard Size, 

Number of separate units

 » Apartment: Appraised Value, Square Feet, Number of people who can live there, 

Monthly Rent 

 » Condo: Appraised Value, Square Feet, Number of people who can live there, Monthly 

Maintenance Fee

http://www.thegreatcourses.com


225Lecture 19 | Object-Oriented Programming with Inheritance

3 Imagine you are given a class, airplane, that includes a member variable, 

weight, as shown below. 

class airplane {
 public:
 float weight;
};

a How would you create a class, jet, that is a subclass of airplane and 

also defines a new member variable, numengines?

b Now assume that you have the following variables declared:

jet commercialplane;
airplane privateplane;

Which of the following commands are valid?

commercialplane.weight = 10000.0;
commercialplane.numengines = 4;
privateplane.weight = 3000.0;
privateplane.numengines = 4;

// QUIZ ANSWERS

1 Remember that private members are not accessible outside the class, 

protected members are accessible to any descendants, and public 

members are accessible to anyone.

a i  No  

ii  No

b i  Yes  

ii  No

c i  Yes  

ii  Yes

2 There is more than one way to organize this. Basically, if there is something 

common between various items, that can be pulled out into a superclass. 

For example, because all 8 classes have member variables Appraised 

Value and Square Feet, these can be pulled into a superclass that you 

might call Real Estate; all other classes would be descended from this. 

Below that, 4 of the classes have Rental Price per Square Foot as a 

member variable, so you could create a new class, Commercial, containing 

a Rental Price per Square Foot member variable that those 4 are then 

derived from. 

Likewise, 4 other classes could be grouped under a Residential class, 

with a member variable Number of people who can live there. 

http://www.thegreatcourses.com


226Lecture 19 | Object-Oriented Programming with Inheritance

Finally, both Single-Family House and Multiplex have a Yard Size 

member variable, so these could both be grouped under a Standalone 

House class. 

Note that it is not necessary to divide things this way, but it is one option.

 » Real Estate (a base class) – Appraised Value, Square Feet

 » Commercial: Derived from Real Estate – Rental Price per 

Square Foot

 » Residential: Derived from Real Estate – Number of people 

who can live there

 » Shopping Center: Derived from Commercial – Length of 

street frontage

 » Restaurant: Derived from Commercial – Kitchen area, 

Dining area

 » Office Building: Derived from Commercial – Number of 

exterior entries 

 » Industrial Facility: Derived from Commercial – Number of 

loading docks

 » Standalone House: Derived from Residential – Yard Size

 » Single-Family House: Derived from Standalone House – 

Number of bedrooms and bathrooms

 » Multiplex: Derived from Standalone House – Number of 

separate units

 » Apartment: Derived from Residential – Monthly Rent

 » Condo: Derived from Residential – Monthly Maintenance Fee

3 a To define this, you need to specify that jet is inheriting from 

airplane by including : public airplane when declaring jet. 

Then, inside the class, you need to declare only the new variable, 

numengines.

class jet : public airplane {
 public:
 int numengines;
};

b These commands are valid:

commercialplane.weight = 10000.0;
commercialplane.numengines = 4;
privateplane.weight = 3000.0;

And this one is not:

privateplane.numengines = 4;

Because jet inherits from airplaine, a jet has both numengines 

and weight member variables, so both assignments to 

commercialplane are valid. However, an airplane does not have 

a numengines member variable, so because privateplane is an 

airplane object, and not a jet object, it is invalid to try to assign to 

that member variable.

 

Also, note that since all variables were public, they are accessible 

from outside the class.  If any of the variables were private or 

protected, then the corresponding command would not have been 

allowed.

Click here to go back to the quiz.

http://www.thegreatcourses.com


227Lecture 20 | Object-Oriented Programming with Polymorphism

20
IN THIS LECTURE:

A Class Hierarchy

Program 20_1

Program 20_2

Program 20_4

Virtual Functions

Program 20_5

Pure Virtual Functions

Program 20_8

Quiz

Quiz Answers

Object-Oriented Programming 
with Polymorphism

One of the key principles of object-oriented design is polymorphism, 
which refers to the idea that a class can take on many different 
shapes. To get at this concept, you need a class hierarchy with 
inheritance—basically, a superclass that's specialized into multiple 
subclasses. The idea is that the superclass, the one higher in the class 
hierarchy, can take on the particular form of any one of its subclasses; 
that is, the superclass can have many different shapes, each of which 
is an example of the overall class.

// A CLASS HIERARCHY

The important part of polymorphism is that you can define 
operations at the highest level of the hierarchy where it makes 
sense—basically, you define an operation on the top-level superclass 
as much as possible. Then, the actual implementation of that 
operation can be defined at any point along the hierarchy. Each of 
the subclasses could potentially have a different way of performing 
that operation, but they all perform it. When you refer to some class, 
then anything that is of that class, including any descendant classes, 
could meet the requirements.

Inheritance can save coding by inheriting features from a base class 
rather than having to repeat them in all the derived classes. But 
probably an even more important feature of inheritance is that it 
supports the ability to let classes lower in the hierarchy meet the 
requirements defined higher in the hierarchy.

The idea of a class hierarchy means that when a function is written 
to use some class, that same function can also use any of its 
descendent classes. However, things don't work the other way 
around: You can't require a more specialized class and pass in the 
more generalized superclass.

http://www.thegreatcourses.com


b

a

c

d

228Lecture 20 | Object-Oriented Programming with Polymorphism

In this code, which uses the hierarchy from the previous 
lecture, you define a base product class and derive cup 
and plate subclasses from that (a). Then, from cup, you 
derive measuring_cup and drinking_cup (b). In this case, 
every member is public. The product class has a wholesale 
price (8)and a retail price (9).

Let's say you wanted to create a function that put items on 
sale by 10%. You might want a function that gives you the 
sale price. So, you can write a function called sale_price 
that returns a floating-point number giving the sale price. It 
will have one parameter, which will be a product. And it will 
return 90% of the product's retail price (c).

Then, you can create very specific objects in your code. In 
this case, you have a plastic_cup that's an instance of a 
measuring_cup and a coffee_cup that's an instance of a 
drinking_cup (d). Because both the measuring_cup and 
the drinking_cup are derived from the product class, you 
can call the sale_price function on both of them (54, 
55) without difficulty!

This is one of the most straightforward ways to use 
polymorphism. When you inherit from a base class, you 
automatically have access to everything that base class has. 
In other words, the descendants from a base class have all 
the member variables and functions from the base class, so 
any descendant can be used in place of that base class.

This makes it possible to extend an existing class to provide 
more functionality. You can add on some additional 
features that you might want and keep everything about 
the class that you already liked.

// Program 20_1
// Inheritance Example - using function on base class
#include<iostream>
using namespace std;

class product {
public:
 float wholesale_cost;
 float retail_cost;

 float profit_per_item() {
  return retail_cost - wholesale_cost;
 }
};

class plate : public product {
public:
 float diameter;
};

class cup : public product {
public:
 float volume;
 string color;
};

class measuring_cup : public cup {
public:
 bool metricunits;
 int num_gradations;
};

class drinking_cup : public cup {
public:
 bool has_lid;
};

float sale_price(product p) {
 return p.retail_cost * 0.9;
}

int main() {
 measuring_cup plastic_cup;
 plastic_cup.wholesale_cost = 0.10;
 plastic_cup.retail_cost = 0.30;
 drinking_cup coffee_cup;
 coffee_cup.wholesale_cost = 0.08;
 coffee_cup.retail_cost = 0.40;

 cout << "The plastic cup costs " << plastic_cup.wholesale_cost 
  << " to purchase and sells for " << plastic_cup.retail_cost << endl;
 cout << "The coffee cup costs " << coffee_cup.wholesale_cost 
  << " to purchase and sells for " << coffee_cup.retail_cost << endl;
 cout << "The sale prices will be " << sale_price(plastic_cup) 
  << " and " << sale_price(coffee_cup) << " respectively." << endl;
}

http://www.thegreatcourses.com


e

f

h

g

i

j

k

229Lecture 20 | Object-Oriented Programming with Polymorphism

Here's a situation in which you can extend an 
existing class. Recall that exceptions are used 
for getting out of functions when you have 
errors. There are different types of exceptions: 
There is a base exception class, and then 
there are a lot of classes that are derived 
from that. Some are derived directly from 
exception, such as logic_error, and some 
are further derived from there, such as out_
of_range being derived from logic_error.

However, the functionality of try-catch 
statements and exception throwing is 
designed to work with the general exception 
class. So, all the various specific exceptions 
can be used in any functions that take an 
exception as input, because they all inherit 
from exception.

You can even create your own exceptions! 
Suppose you want to create a new version 
of a logic_error, one that you can use to 
report when there is a bad value. And say you 
want to keep track of that value within your 
exception itself.

In Program 20_2, you've defined a new 
class (e), bad_value_exception, that inherits 
from logic_error. The class does a few 
things. First, it has a private member integer 
variable, value, which will be used to store 
the bad value that was used (f). It has a 
constructor that takes in an integer and a 
string, with the string having a default value of 

the empty string so that the constructor could 
be called with just an integer. The constructor 
uses the string to initialize the logic_error 
base class, and it uses the integer parameter 
to set the value member variable (g). Finally, 
your new bad_value_exception class has 
a public member function, printval, that 
prints that stored value (h). Basically, this 
class is now your own special exception that 
you can throw when you want to and use how 
you want.

Next, you have a function defined, 
something_to_do, that has one input 
parameter. For some values of the input 
parameter, those less than 3, it will print a 
message, and for others it will throw your 
bad_value_exception (i).

In the main function, you have a try block 
where you call the something_to_do function 
with 3 different parameters (j). The first call 
will be a good value, so it will just print an 
output statement normally; no exception is 
thrown. The second call, though, causes a bad_
value_exception to be thrown. So, in your 
catch block (k), you have a catch defined to 
take a bad_value_exception, and for that you 
use the printval function to print the value.

When this is run, you get one line of output 
from the something_to_do function and 
another line printed from the printval as part 
of the exception catching.

// Program 20_2
// Defining our own exception
#include<iostream>
#include<exception>
#include<stdexcept>
using namespace std;

class bad_value_exception : 
public logic_error {
private:
 int value;

public:
 bad_value_exception(int n, 
string s = "") : logic_error(s) {
  value = n;
 }

 void printval() {
  cout << "The number " 
<< value << " was used when it 
wasn't allowed." << endl;
 }
};

void something_to_do(int x) {
 // Print the value if it's 
less than 3, throw an exception 
otherwise
 if (x > 3) {
  throw(bad_value_
exception(x, "Bad Value"));
 }
 else {
  cout << x << " is a good 
number." << endl;
 }
}

int main() {
 try {
  something_to_do(1);
  something_to_do(5);
  something_to_do(10);
 }
 catch (bad_value_
exception e) {
  e.printval();
 }
}

http://www.thegreatcourses.com


230Lecture 20 | Object-Oriented Programming with Polymorphism

You did not have to make bad_value_
exception derive from exception; you can 
throw and catch things other than exceptions. 
But if you modified your code slightly to make 
it more general—where instead of catching 
just a bad_value_exception, you catch a 
more general exception and output a general 
statement—you see that this still works for 
your bad_value_exception. 

38  catch (bad_value_exception e) {
39   e.printval();
40  }

38  catch (exception e) {
39   cout << "Encountered an 

exception!" << endl;
40  }

In other words, because you made your new 
class derive from logic_eror, which is itself 
derived from exception, you can use it in 
all the ways that you would have used an 
exception. Plus, if you ever want the special 
functionality that logic_eror could provide, 
you have that, too!

Polymorphism can do even more than just let 
you use inherited classes. You also have the 
ability to create member functions of classes 
that operate differently but can be called the 
same way. 

Here is the general idea of how polymorphism 
works. A base class declares some 
function and possibly even provides an 
implementation—a full definition—for that 

function. Then, a class that is derived from 
that base class creates a slightly different 
version of the same function.

Suppose you have a base class and a derived 
class. Say that there is a function, A, defined in 
the base class and that the derived class also 
has a function, A, defined.

Then, imagine that you have code that defines 
a function, fun, that takes in a base_class as 
a parameter and that then calls the function A 
on that parameter.

When you call the function fun with an 
instance of base_class, then it should call the 
function A that's defined in the base class. On 
the other hand, if you call fun with an instance 
of derived_class, then it should call the 
function A that's defined in the derived class.

http://www.thegreatcourses.com


l

m

o

n

231Lecture 20 | Object-Oriented Programming with Polymorphism

Imagine that you're a car dealer. You'll have a 
general class to keep track of cars, and then 
from that, you'll derive classes that represent 
the more specific cars. 

In this case, you have a base car class that 
contains 2 member variables: base_price and 
model_name (l).

You'll also have a class for the SC300 model 
car (m), which inherits from the car class. 
That class will have 3 member variables that 
are Booleans indicating whether the car has 
various add-on features specific to that car, 
such as a performance or entertainment 
package.

Each of these classes will also have 
constructors defined. For the car class, there 
will be both a default constructor for a generic 
model car and a constructor allowing the base 
price and model name to be set (n).

For the SC300 class, the constructor will take 
parameters specifying whether or not the 
various options were ordered. It will call the 
car constructor with the base price for the 
SC300 and the model name for the SC300 and 
then will set the appropriate Booleans (o).

// Program 20_4
// Not Quite Polymorphism Example
#include<iostream>
#include<string>
using namespace std;

class car {
protected:
 float base_price;
 string model_name;

public:
 car() {
  base_price = 20000.0;
  model_name = "Generic1";
 }

 car(float price, string name) {
  base_price = price;
  model_name = name;
 }

 void print_info() {
  cout << "The model " << model_name << " costs " << base_price << endl;
 }

 float price() {
  return base_price;
 }
};

class SC300 : public car {
protected:
 bool performance_package;
 bool entertainment_package;
 bool safety_enhancements;

public:
 SC300(bool p, bool e, bool s) : car(35000.0, "SC300") {
  performance_package = p;
  entertainment_package = e;
  safety_enhancements = s;
 }

http://www.thegreatcourses.com


p
q

232Lecture 20 | Object-Oriented Programming with Polymorphism

Both the base car class and the derived 
SC300 class will have 2 functions: one giving 
the price (27, 63) and one that prints 
information about the vehicle (23, 45). 
For the car class, the price is just the base 
price, and the only thing to print is the model 
name and price. For the SC300, the price is 
determined based on which optional packages 
are included, and the output will be more 
complicated.

If you create a generic car, using the default 
constructor for the car class, and call the 
print_info function for that object, it will call 
the version of print_info defined in the car 
class (p). If you instead create an SC300 car 
and call print_info for it, you will be calling 
the print_info function defined in the SC300 
class—not the one defined in the car class (q).

This is still not "full" polymorphism. All you 
are doing here is letting subclasses do some 
redefining of functions; a complete version 
of polymorphism comes from the superclass, 
where a single function from the superclass 
is created that takes on different forms in the 
subclasses.

 void print_info() {
  cout << "The model " << model_name;
  float total_price = base_price;
  if (performance_package) {
   cout << ", with the performance package";
   total_price += 3000.0;
  }
  if (entertainment_package) {
   cout << ", with the entertainment package";
   total_price += 1200.0;
  }
  if (safety_enhancements) {
   cout << ", with safety enhancements";
   total_price += 2100.0;
  }
  cout << " costs " << total_price << endl;
 }

 float price() {
  float total_price = base_price;
  if (performance_package) {
   total_price += 3000.0;
  }
  if (entertainment_package) {
   total_price += 1200.0;
  }
  if (safety_enhancements) {
   total_price += 2100.0;
  }
  return total_price;
 }
};

int main() {
 car x;
 x.print_info();
 SC300 y(true, false, true);
 y.print_info();
}

http://www.thegreatcourses.com


r

s

233Lecture 20 | Object-Oriented Programming with Polymorphism

// VIRTUAL FUNCTIONS

This is a modified version that does, in fact, 
demonstrate polymorphism. Notice that this code 
is the same as the previous code, except for a few 
changes:

 » In the base class, car, you now have the word virtual 

in front of your 2 member functions that you want to 

override in the base class (r). The virtual is needed to 

say that "this function will be a polymorphic function."

 » You have defined a new function, called print_car. This 

function takes in a car parameter—as a reference—and 

calls print_info for that car (s).

 » The main code is also modified so that you are calling 

the print_car function, passing in a car and an SC300 

rather than calling the member functions for each 

(27, 63).

When you run this code, you indeed see that the 
specific versions of print_info are called. In other 
words, when you call print_car with a car object, it 
will end up calling the print_info command defined 
in the car class. And when you call print_car with 
an SC300 object, it will end up calling the print_info 
command defined in the SC300 class. This is exactly 
what you want from polymorphism: the ability to 
define a different version of a function for different 
classes. This way, when you call print_car, you get 
the most descriptive output you can.

Virtual functions get defined differently—
that is, take on a different shape—in all the 
child classes.

// Program 20_5
// Polymorphism Example
#include<iostream>
#include<string>
using namespace std;

class car {
protected:
 float base_price;
 string model_name;

public:
 car() {
  base_price = 20000.0;
  model_name = "Generic1";
 }

 car(float price, string name) {
  base_price = price;
  model_name = name;
 }

 virtual void print_info() {
  cout << "The model " << model_
name << " costs " << base_price << endl;
 }

 virtual float price() {
  return base_price;
 }
};

class SC300 : public car {
protected:
 bool performance_package;
 bool entertainment_package;
 bool safety_enhancements;

public:
 SC300(bool p, bool e, bool s) : 
car(35000.0, "SC300") {
  performance_package = p;
  entertainment_package = e;
  safety_enhancements = s;
 }

 void print_info() {
  cout << "The model " << 
model_name;
  float total_price = base_price;
  if (performance_package) {
   cout << ", with the 
performance package";
   total_price += 3000.0;
  }
  if (entertainment_package) {
   cout << ", with the 
entertainment package";
   total_price += 1200.0;
  }
  if (safety_enhancements) {
   cout << ", with safety 
enhancements";
   total_price += 2100.0;
  }
  cout << " costs " << total_
price << endl;
 }

 float price() {
  float total_price = base_price;
  if (performance_package) {
   total_price += 3000.0;
  }
  if (entertainment_package) {
   total_price += 1200.0;
  }
  if (safety_enhancements) {
   total_price += 2100.0;
  }
  return total_price;
 }
};

void print_car(car& c) {
 c.print_info();
}

int main() {
 car x;
 print_car(x);
 SC300 y(true, false, true);
 print_car(y);
}

http://www.thegreatcourses.com


t u

234Lecture 20 | Object-Oriented Programming with Polymorphism

It's a different situation than previously 
in Program 20_4, when you were calling 
print_info directly on an object (q). There, 
you knew that you were calling the function 
from an SC300 object. So, you'd first look at 
the SC300 definition to see if print_info is 
defined there: If it is, like it was in Program 
20_4, you would have used that, and only if it 
was not defined would you look at the parent 
to see if it had print_info, and so on.

In this case, though, you are in a function 
where you think you have a car object (t). 
So, the compiler is going to look at the car 
class and find a print_info function defined 
and use that. It isn't going to look further 
to see if that function has been overridden 
because it was not declared a virtual function.

If you remove the virtual from in front of 
the declarations in the base class, then when 
you run the code, the output when you pass 
in the SC300 object is the print_info result 
for the car class—not for the SC300 class! 
You know this because you're not seeing 
the printout of the various options, and the 
price is only the base price, not the price 
with options.

You no longer have a polymorphic function. 
Instead, the calling function, print_car, says 
"I have a car object, so I will call the car 
object's print_info function." Without the 
virtual statement, it won't look to see if this 
function has been overridden by a subclass.

If there is a function that you want 
to allow to be polymorphic—that is, 
that you want to allow a subclass to 
override and provide a more detailed 
description of—then you should 
always make sure it is declared to be 
a virtual function.

Note that subclasses don't have to 
redefine the function if it's virtual; 
they just have the option of redefining 
it if they want to.

Let's look at one other variation, with the 
virtual back on these functions so that 
they're indeed polymorphic and so that the 
subclasses can redefine the function if they so 
choose.

But now you'll change the print_car function 
to take in a parameter by value, instead of by 
reference; that is, instead of the parameter 
being car& c, you just have car c.

23  virtual void print_info() {
24   cout << "The model " << 

model_name << " costs " << base_
price << endl;

25  }
26 
27  virtual float price() {
28   return base_price;
29  }

...  }

78 void print_car(car& c) {
79  c.print_info();
80 }

23  virtual void print_info() {
24   cout << "The model " << 

model_name << " costs " << base_
price << endl;

25  }
26 
27  virtual float price() {
28   return base_price;
29  }

...  }

78 void print_car(car c) {
79  c.print_info();
80 }

http://www.thegreatcourses.com


235Lecture 20 | Object-Oriented Programming with Polymorphism

Again, the output shows that the print_info function that is called 
is the one for the car class, not the one for the SC300 class. But it 
looked like you declared this as virtual. What happened?

In the preceding case, you create an SC300 object in your main code 
and pass this to the print_car function using a pass by reference. 
When this function is called, the memory for the parameter has a 
reference stored. This is basically a pointer, and it has a reference to 
the object that was passed in. No data is copied. Because the SC300 
class is derived from the car class, it is OK to pass in the SC300 as a 
reference.

So, when you call print_info within the print_car function, you go 
to that reference and call print_info on it. Because the thing it is 
referring to is the SC300 object that was created before, it will try to 
call the print_info command for the SC300 class. Because print_
info was declared to be virtual, it will look for the most specific 
version of that function, which is the one defined in the SC300 class.

On the other hand, when you pass by value, you still have an SC300 
defined in the main program that you call print_car on, but now it 
is a parameter that is passed by value. 

When the function is called, there is space set aside in memory for 
a car object. Then, the values from the argument are copied into 
the car object that has been allocated. In this case, that's the base_
price and the model_name, which were defined in the car class, 
but not the various Booleans that indicated which packages were 
selected. 

Thus, the thing that's sitting there in memory is a car—not an SC300. 
It has no memory of having originally come from an SC300; all it 
knows is that it's a car. As a result, when you call print_info on 
that object, it's going to use the print_info command defined for 
the car class, not the one defined for the SC300 class.

http://www.thegreatcourses.com


236Lecture 20 | Object-Oriented Programming with Polymorphism

// PURE VIRTUAL FUNCTIONS

It's possible for the base class to declare a 
virtual function yet provide no definition. This 
is known as a pure virtual function, and it has 
some major implications for the class itself.

In this code, you are providing classes that 
can be used to calculate shipping costs for 
a package. To keep things simple, the class 
will have no member variables and just one 
member function, shipping_cost.

You have one base class, shipping_company 
(6), which will be a class that the other classes 
inherit from. In the shipping_company class, 
you declare one member function, shipping_
cost (8). Notice that the shipping_cost 
function is declared virtual, as expected, and it 
has a return value, float, and takes in a single 
float parameter. Notice that the parameter 
does not have to have a name declared, 
because you are not actually defining the 
function here. Instead, this is going to be a 
pure virtual function, and to designate that, 
instead of providing the function definition—
that is, instead of the body enclosed in curly 
braces—you write =0;.

A pure virtual function will have to be defined 
in the derived classes. In this case, you have 
3 different specific shipping companies. Each 
of these will define its own version of the 
shipping_cost function.

// Program 20_8
// Pure virtual function
#include<iostream>
using namespace std;

class shipping_company {
public:
 virtual float shipping_cost(float) = 0;
};

class VQT : public shipping_company {
public:
 float shipping_cost(float weight) {
  return 3.0 + 1.5*weight;
 }
};

class NatFast : public shipping_company {
public:
 float shipping_cost(float weight) {
  return 2.0*weight;
 }
};

class GovernmentPost : public shipping_
company {
public:
 float shipping_cost(float weight) {
  if (weight < 2.0) {
   return 4.0;
  }
  else if (weight < 4.0) {
   return 8.0;
  }
  else if (weight < 6.0) {
   return 11.0;
  }
  else {
   return 2.0*weight;
  }
 }
};

shipping_company& select_company() {
 int option;
 cout << "Which shipping company do you 
use? " <<
  "Enter 1 for VQT, 2 for NatFast, 3 
for Government Post: ";
 cin >> option;
 if (option == 1) {
  return *new VQT();
 }
 else if (option == 2) {
  return *new NatFast();
 }
 else {
  return *new GovernmentPost();
 }
}

int main() {
 float w;
 cout << "What is the package weight? ";
 cin >> w;
 shipping_company& x = select_company();

 cout << "Your package will cost " << 
x.shipping_cost(w) << " to ship." << endl;
}

http://www.thegreatcourses.com


237Lecture 20 | Object-Oriented Programming with Polymorphism

The key thing to realize is that the base class, shipping_company, 
declared a pure virtual function with no implementation. Only in the 
derived classes were actual definitions for that function given.

When you have pure virtual functions, it's important to realize that 
you can't have an instance of just the base class. In the example, it 
doesn't make any sense to have just a shipping company; there's 
no way to know what the shipping cost would be for some generic 
shipping company. Instead, you need to have a specific shipping 
company.

A class that has pure virtual functions is an abstract class. It's 
abstract in the sense that it defines a general idea, like shipping_
company, that can't refer to any specific instance of the class, but 
rather just defines some more general, abstract representation. 

You can't create an object out of an abstract class, though you can 
have references to an abstract class. Classes that do provide the 
implementation details—the lower-level derived classes that you can 
create objects from—are sometimes called concrete classes.

So, notice that if you take the same prior definitions and change the 
main routine to try to create an instance of a shipping_company, 
you end up with an error telling you that you can't declare an 
abstract type. 

Exercise

Click here to see the solution.

Create an abstract shape class that has an area function. Then, create 2 specific, concrete classes—square and circle—that 
inherit from the general shape class.

READINGS
a Stroustrup, Programming Principles and Practice Using C++, 

sections 14.2–14.3.

b Lippman, Lajoie, and Moo, C++ Primer, sections 15.3–15.4.

// Error when trying to instantiate an abstract class
...
int main() {
 shipping_company s;
}

http://www.thegreatcourses.com


238Lecture 20 | Object-Oriented Programming with Polymorphism

// QUIZ

1 Are the following true or false regarding a pure virtual function?

a You can provide a default definition for the pure virtual function to 

use in case it is not defined in a subclass.

b It is defined using a line where the virtual function header is provided 

and then = 0; is added.

c The class where a pure virtual function is declared is an abstract class.

d Only one subclass can instantiate the pure virtual function.

2 How would you create a new type of exception, called an insufficient_
storage exception, that stored (in a public member variable) an integer 

amount_short?

Exercise Solution

Click here to go back to the exercise.

Here's one way that this could be implemented.

1 // Program 20_9
2 // Abstract shape class with pure virtual area function
3 #include<iostream>
4 using namespace std;
5 
6 class shape {
7 public:
8  virtual float area() = 0;
9 };
10 
11 class square : public shape {
12 private:
13  float side_length;
14 
15 public:
16  square(float s) {
17   side_length = s;
18  }
19 
20  float area() {
21   return side_length * side_length;
22  }
23 };
24 

25 class circle : public shape {
26 private:
27  float radius;
28 
29 public:
30  circle(float r) {
31   radius = r;
32  }
33 
34  float area() {
35   return radius * radius*3.14159;
36  }
37 };
38 
39 int main() {
40  square s(3.0);
41  circle c(3.0);
42  cout << "Areas are: " << s.area() << " and " << c.area() << endl;
43 }

http://www.thegreatcourses.com


239Lecture 20 | Object-Oriented Programming with Polymorphism

1 #include<iostream>
2 #include<string>
3 using namespace std;
4 
5 class airplane {
6  public:
7  float weight;
8  string name;
9  
10  void print_name() {
11   cout << "For the airplane " << name << ", ";
12  }
13  
14  virtual void print_info() {
15   cout << "weight is: " << weight << endl;
16  }
17 };
18 
19 class jet : public airplane {
20  public:
21  int numengines;
22  
23  void print_name() {
24   cout << "For the jet " << name << ", ";
25  }
26 
27  void print_info() {
28   cout << "weight is: " << weight << " and there are ";
29   cout << numengines << " engines"<< endl;
30  }
31 };
32 

Click here to see the answers.

3 What would be the output of the following code? (Be careful to look at how each function is defined and exactly what is called in each function call.)

33 void print_plane_data(airplane a) {
34  a.print_name();
35  a.print_info();
36 }
37 
38 void print_plane_data2(airplane& a) {
39  a.print_name();
40  a.print_info();
41 }
42 
43 int main()
44 {
45  airplane privateplane;
46  jet commercialplane;
47  privateplane.name = "A123";
48  privateplane.weight = 3000.0;
49  commercialplane.name = "B456";
50  commercialplane.weight = 10000.0;
51  commercialplane.numengines = 4;
52  privateplane.print_name();
53  privateplane.print_info();
54  commercialplane.print_name();
55  commercialplane.print_info();
56  print_plane_data(commercialplane);
57  print_plane_data2(commercialplane);
58 }

http://www.thegreatcourses.com


240Lecture 20 | Object-Oriented Programming with Polymorphism

// QUIZ ANSWERS

1 Remember that a pure virtual function is 

declared in an abstract class and must be 

instantiated in a subclass.

a False. You cannot provide a default version 

of the pure virtual function; if this were the 

case, it would not be a pure virtual function, 

but just a regular virtual function.

b True. You define a pure virtual function by 

adding =0; to the header. For example, 

virtual bool is_valid() = 0;

declares a pure virtual function named is_
valid that takes no parameters and returns 

a Boolean.

c True. When a class has a pure virtual 

function, it cannot be instantiated; you 

cannot have an object of that class because 

the function is not defined. This is called an 

abstract class.

d False. The pure virtual function can be 

instantiated in any and all subclasses. 

Every subclass must have some definition 

(inherited or defined in that class) for it to 

be instantiated.

2 To create such an exception, you would need to 

have #included <exception> and <stdexcept>. 
Then, the class definition just inherits from 

exception:

class insufficient_storage : 
public exception {

 public:
 int amount_short;
};

Then, insufficient_storage could be used 

wherever an exception was used.

3 Here is the output:

For the airplane A123, weight 
is: 3000

For the jet B456, weight is: 
10000 and there are 4 engines

For the airplane B456, weight 
is: 10000

For the airplane B456, weight 
is: 10000 and there are 4 engines

Notice several things about how the classes are 

arranged. 

 » The airplane class defines print_name as a 

non-virtual function. The jet class then also 

defines print_name, with slightly different 

output. This means that only jet objects 

or references will look at the jet version 

of the function and that any time there is 

an airplane, including a reference to an 

airplane, the airplane version will be used. 

 » So, when commercialplane calls print_
name directly, then the jet version is used. 

But when commercialplane is passed to 

either print_plane_data or print_plane_
data2, it is treated as an airplane, not a 

jet, so the airplane version is used.

 » The print_plane_data function takes an 

airplane parameter by value. Thus, the 

local parameter, a, is always an airplane, 

regardless of what subclass might have 

been passed in. There is a new airplane 

object created in memory, which is set 

based on the argument to the function. 

Thus, only the airplane versions of 

functions (both print_name and print_
info) are called.

 » The print_plane_data2 function, however, 

takes an airplane parameter by reference. 

Thus, when you pass in commercialplane, 

there is nothing copied; instead, you have 

a reference to the full jet object. Although 

the print_name (which was not virtual) 

function still uses the airplane version, 

the print_info function is virtual, so the 

version of whichever print_info is defined 

for that object is used. In this case, that is 

the jet version.

Click here to go back to the quiz.

http://www.thegreatcourses.com


241Lecture 21 | Using Classes to Build a Game Engine in C++

21
IN THIS LECTURE:

Designing Classes

Coding Your Design

Quiz

Quiz Answer

Using Classes to Build a 
Game Engine in C++

What you've been learning about object-oriented program is all going to 
come together now as you are walked through a development process 
for designing a game engine that can be used for more than one game 
through the use of classes.

// DESIGNING CLASSES

You want to create a system that lets you 
play 2-person board games on a computer. 
In lecture 15, you developed a Connect 4 
game; in this lecture, you want to build on 
your top-down design but use object-oriented 
principles. In fact, you'll do this in a class that 
can handle all kinds of 2-person games—not 
just Connect 4, but checkers, chess, or Othello.

For this implementation, the focus will be on 
2 different games: Connect 4 and Othello, 
known more generally as Reversi.

As is the case with any approach to software 
development, the first thing you should do 
when faced with a programming problem is 
stop and think.

In Reversi, players take turns placing either black or white pieces on an 8-by-8 
board. The game starts with 2 white and 2 black pieces already placed in the middle 
4 squares.

If a black piece is placed, it has to be placed next to some white piece—beside, 
above, below, or diagonally. If the new black piece causes any white pieces to be 
newly bracketed by a pair of black pieces—in a row, column, or diagonal—then that 
causes all those newly bracketed pieces to switch color to black.

The winner is the one with the most of his or her 
color piece on the board after the board is 

filled up.

http://www.thegreatcourses.com


242Lecture 21 | Using Classes to Build a Game Engine in C++

For object-oriented design, your first thought 
should be to consider what the objects of 
interest are. From there, you can figure out 
what classes you need for those objects.

In a very general sense, you'll probably need

 » some sort of class for a game in general to keep 

track of whose turn it is, and so on;

 » some gameboard class to hold the current state 

of the board; and

 » some way to describe what a move will be, 
where the one thing all the games will have in 

common is 2 players taking turns.

Those are all abstract ideas, so they're likely 
to end up as abstract classes. You'll also need 
some more concrete versions of those same 
classes: the specific gameboards for Connect 
4 and for Reversi and the specific moves 
for Connect 4 and Reversi. These sound like 
subclasses.

Once you've thought about classes, you 
can start to look for hierarchies. In this case, 
there are a few obvious relationships. The 
abstract gameboard should be a parent to the 
concrete Connect 4 gameboard and Reversi 
gameboard. Likewise, the abstract gamemove 
should be a parent to a Connect 4 move and a 
Reversi move.

Once you have a general idea of the hierarchy, 
you need to think about exactly the member 
variables and member functions each class 
should have, as well as which should be public, 
protected, and private. For your abstract 
classes, you'll need to think about virtual 
functions.

Start at the top and think about the game 
class. Overall, a game needs to have a 
gameboard, which is another class, to keep 
track of the current state of the board, 
called board.

The gameboard is not something that you 
want things outside the game messing with 
directly; you want to make sure that only valid 
moves are made, that players don't make 
2 moves in a row, and so on. Because you 
want to moderate any actions that a program 
running a game can take, this should be a 
private variable of the game class—meaning 
that only the game class can access it directly, 
and others (whether a player or a computer) 
can only access it through functions the game 
class provides.

A gameboard is going to be an abstract class, 
which means you'll have to have concrete 
gameboard classes, such as a Connect 4 
gameboard or a Reversi gameboard.

To store an abstract gameboard in the game 
class, you'll use a pointer to a gameboard.

To keep track of what you're doing, you can use Unified Modeling Language 
(UML), which is a notation system developed by object-oriented programmers for 
creating blueprints in the software industry.

In UML, when you describe a class, you use a 
rectangle with the class name in a box at the top, 
followed by 2 other boxes: one giving the member 
variables, or attributes, and the box at the bottom 
giving the member functions, also called methods 
or operations.

There are commonly used abbreviations for designating whether elements of a class 
are public (+), private (-), or protected (#).

Italics are used for classes that are abstract and for virtual functions.

Remember that it's OK to have a 
pointer to the parent type, even if the 
actual object is one of the child types.

Class name

VARIABLES: attributes

FUNCTIONS:
methods
operations

http://www.thegreatcourses.com


243Lecture 21 | Using Classes to Build a Game Engine in C++

You will likely also want other functions—
for taking a turn or declaring a winner—that 
will also be protected. These would all be 
functions that take no parameters and don't 
return anything, so you'd write # take_turn 
() and # declare_winner ().

Finally, you'll want a public function that 
actually starts the game and keeps it going 
until the game's over. You'll call that start_
game and thus write + start_game () for it.

In UML, you'll write - board : gameboard* 
in the box designated for variables. The - 
notes that it's a private member variable. The 
board is the name of the variable, and the 
gameboard* shows that the variable is going 
to be a pointer to a gameboard.

Likewise, you'll need to be able to take moves 
in the game. Like gameboard, a gamemove is 
going to be an abstract class. So, you will have 
a gamemove*, a pointer that is named turn for 
keeping track of moves.

You'll also need to keep track of which player 
moves next. So, you'll have a private member 
variable named playerturn that's an integer. 
Perhaps you also want to keep track of how 
many turns have occurred in the game. A 
more complex game class might keep other 
information.

Notice that for each UML entry, you'll have a 
corresponding line of code. The UML is not 
code itself, though, and the order of terms is 
different. For example:

- board : gameboard* in UML becomes 
gameboard* board; in code

- turn : gamemove* in UML becomes 
gamemove* turn; in code 

In UML, you were starting with what's obvious 
for humans: board, turn, playerturn, 
numturn, etc. But in C++, you are starting 
with the type—the information that's more 
important for computers.

You also need to consider what functions a 
game class needs to provide.

You can use your UML diagram to organize 
this. The functions you want the class to 
provide will go in the last box. For each of 
them, you'll think about the function, what 
name you want it to have, and then what 
parameter types it takes in and returns. Finally, 
you'll consider whether you want the function 
to be public, private, or protected.

You'll need a constructor, and it will take in 
2 parameters: one for the gameboard and 
one for the gamemove. And constructors 
need to be public. So, in your UML diagram, 
you'll write +, indicating that it's public; then 
game, because it's a constructor; and then 2 
parameters in the parentheses: board, which is 
of type gameboard, and turn, which is of type 
gamemmove.

The function to check for a winner won't take 
any parameters, and it'll return an integer, 
giving an indication of which player, if either, 
won. This is a function that you want to call 
from the game class itself, rather than from 
outside the class, so you'll make it a protected 
function. Using UML notation, you'd write # 
check_winner () : int.

Game

- board : gameboard*
- turn : gamemove*
- playerturn : int
- numturns : int

+  game(board : gameboard, turn : 
gamemove)

# check_winner () : int
# take_turn ()
# declare_winner ()
+ start_game ()

http://www.thegreatcourses.com


244Lecture 21 | Using Classes to Build a Game Engine in C++

Likewise, you need to define 
the classes for the gameboard, 
as well as its derived classes, 
connect4_board and reversi_
board. The gameboard will 
be an abstract class, and it 
needs to have a few public 
functions that will be pure 
virtual functions. It should be 
able to print a gameboard, so 
you'll declare a print_board 
function. It should be able to 
check a board for a winner, 
returning an integer indicating 
who won or if it's a tie. And it 
should be able to make a move 
if it receives a move of the 
appropriate type. All of these 
functions will vary depending 
on the particular game, so the 
abstract gameboard class can't 
implement any of them.

In the connect4_board 
class, you'll need concrete 
implementations of each of 

the virtual functions that were 
declared in the gameboard 
class. You'll also need to store 
information about the board 
itself. You'll want to store the 
number of rows and columns 
in a gameboard, because it can 
potentially vary. You'll use a 
vector of vectors to store the 
information at each point on 
the board.

Finally, you'll also have a few 
constructors: one for the 
default-size Connect 4 board 
and one for a board where you 
specify the number of rows and 
columns specifically.

Let's look at another class, the 
gamemove class, which will be 
an abstract class. A move is 
associated with a player, so 
your gamemove class will have a 
member variable, player. You'll 
make it a protected variable, so 
all classes that inherit from it 
will have access to this variable. 
It'll also have a pure virtual 
function, ask_move, that will 
ask the player for a move. It'll 
take in one integer parameter: 
the player whose turn it is to 
move. Because this is a virtual 
function, the UML convention is 
to write it in italics.

You also have your 2 derived 
classes, connect4_move and 
reversi_move. These inherit 
from the gamemove class. 
Inheritance is designated by 
using arrows with an unfilled 
triangular arrowhead. 

Each specific move is a little 
different. A connect4_move 
will need to store a column—
the column that a piece will be 
dropped into. A reversi_move 
will need to store both a row 
and a column.

Each of the derived classes will 
also need to provide a concrete 
implementation of the ask_
move function. Plus, you'll need 
accessor functions for a move—
functions to set a move or that 
will let some other class find out 
what the position of the move is 
and which player made it. You'll 
use r for row, c for column, 
and p for player to provide this 
information.

gamemove

# player : int

+ ask_move(nextplayer : int)

connect4_move

- column : int

+ ask_move(nextplayer : int)

+ c () : int

+ p () : int

reversi_move

- row : int

- column : int

+ ask_move(nextplayer : int)

+ r () : int

+ c () : int

+ p () : int

gameboard

+ print_board()

+ check_winner() : int

+ take_turn(m : gamemove*)

connect4_board

- rows : int

- columns : int 

- board : vector<vector<int> >

+ connect4_board()

+ connect4_board(r: int, c: int)

+ print_board()

+ check_winner() : int 

+ take_turn(m : gamemove*)

reversi_board

- board : vector<vector<int> >

+ reversi_board()

+ print_board()

+ check_winner() : int 

+ take_turn(m : gamemove*)

http://www.thegreatcourses.com


245Lecture 21 | Using Classes to Build a Game Engine in C++

In the reversi_board class, just the one 
default constructor is all you need, because 
the board will always be 8 by 8 in size. Again, 
you need to store the board information with 
a vector of vectors. And you need concrete 
implementations of the virtual functions 
declared in the parent class.

At this point, you basically have your entire set of classes designed. But you might—and, 
in fact, will—end up wanting more functions than just these. Some functions will be too 
large to do everything in one function, so you'll want to divide those larger tasks into 
smaller ones using top-down design principles.

For the connect4_board, you need to check for winners in various directions, so you'll 
include functions to check for winners in the vertical, horizontal, and both diagonal 
directions. You'll also have a check to see if the board is totally full and if a column is full.

All of this is similar to the 
procedural, top-down design 
you did in a previous lecture, 
but now these are member 
functions of the connect4_
board class.

gameboard

+ print_board()
+ check_winner() : int
+ take_turn(m : gamemove*)

gameboard

+ print_board()
+ check_winner() : int
+ take_turn(m : gamemove*)

+ connect4_board()
+ connect4_board(r: int, c: int)
+ print_board()
+ check_winner() : int 
+ take_turn(m : gamemove*)
+ take_turn(m : connect4_move*)
- check_vertical_winner(player : int)
- check_horizontal_winner(player : int)
- check_increasing_diagonal_winner(player : int)
- check_decreasing_diagonal_winner(player : int)
- check_full_board()

connect4_board

- rows : int
- columns : int 
- board : vector<vector<int> >

Realistically, when you're designing a set 
of classes, you might not know every 
function that you'll need right at the 
beginning. That's OK. You might need to 
change your class design as you build, but 
hopefully you'll have the major parts of 
the design in place.

+ reversi_board()
+ print_board()
+ check_winner() : int 
+ take_turn(m : gamemove*)
+ take_turn(m : reversi_move*)
- mark_up(r: int, c: int)
- mark_down(r: int, c: int)
- mark_right(r: int, c: int)
- mark_left(r: int, c: int)
- mark_diagul(r: int, c: int)
- mark_diagur(r: int, c: int)
- mark_diagdr(r: int, c: int)
- mark_diagdl(r: int, c: int)

reversi_board

- board : vector<vector<int> >

Likewise, for a reversi_board, you're going to 
want some additional functions to help you change 
the board. In particular, when you place a piece, 
you might need to flip pieces in any of 8 directions: 
up, down, left, right, and along 4 diagonals. So, 
you'll create 8 additional functions to help mark the 
board in those 8 directions after placing a piece.

http://www.thegreatcourses.com


246Lecture 21 | Using Classes to Build a Game Engine in C++

// CODING YOUR DESIGN

With your design finished, you now want to start coding everything.

A good place to begin is with the implementation of your game class, 
because it's the most fundamental of the classes.

Start by comparing the class design that you came up with in UML 
with what those same steps look like in code. The member variables 
would be declared as a gameboard pointer, board; a gamemove 
pointer, turn; an integer, playerturn; and an integer, numturns.

 private:
 gameboard* board;
 gamemove* turn;
 int playerturn;
 int numturns;

The next thing in your design were the member functions of the 
class, starting with your constructor, which is going to take as input 
a gameboard and a gamemove. These 2 classes are abstract and do 
not have a specific value, so they have to be passed in by reference. 
You write gameboard& b to get a reference to the gameboard 
and gamemove& m to get a reference to the gamemove. Inside the 
constructor, you just get a reference to the gameboard—in other 
words, a pointer to the gameboard—and assign it to the board 
member variable. You do the same for the gamemove, assigning it to 
the turn member variable.

 game(gameboard& b, gamemove& m) {
  board = &b;
  turn = &m;
 }

The next function in your design was a check_winner function, 
which was protected. You're implementing check_winner within the 
gameboard class, because the gameboard itself determines who the 
winner is. So, your code just calls the check_winner function in the 
gameboard you have stored.

 int check_winner() {
  return board->check_winner();
 }

Your next routine to look at is the take_turn routine, which should 
take a turn in the game. This means that you want to first have 
the board printed out to the screen, so you call the print_board 
member function of your board. You then want to get the move that 
the next player wants. You have a member variable, playerturn, 
that should say whose turn it is, so you pass this as an argument to 
the ask_move function of your turn member variable. That will call 
ask_move in whatever gamemove the turn variable is pointing to. 
Finally, you'll need to update the board based on that move, so you'll 
call take_turn on the board, passing in the move you just got to the 
gameboard.

 void take_turn() {
  board->print_board();
  turn->ask_move(playerturn);
  board->take_turn(turn);
 }

The full code is several hundred lines, so only some key 
specific parts of the program are highlighted here.

The full program is available for download at 
www.TheGreatCourses.com/CPlusPlus.

http://www.thegreatcourses.com


247Lecture 21 | Using Classes to Build a Game Engine in C++

Your declare_winner function is several lines 
of code, but it's really just checking the various 
possible endgame situations. You determine 
winners based on the board status, so you just 
call check_winner on the board itself to find 
out who the winner is and print out the final 
board and a message about the winner.

 void declare_winner() {
  int result = check_winner();
  board->print_board();
  cout << "The game ended after " 
<< numturns << " turns." << endl;
  if (result == 1) {
   cout << "Player 1 wins!  
Congratulations!" << endl;
  } else if (result == 2) {
   cout << "Player 2 wins!  
Congratulations!" << endl;
  } else if (result == 3) {
   cout << "The game has ended in 
a tie." << endl;
  } else if (result == 0) {
   cout << "The game ended before 
it was completed." << endl;
  }
 }

Your final function is start_game. This public 
function is probably the main one inside the 
game class. It's the function that actually 
makes the game run. In this function, you 
initialize your member variables to 0. You then 
enter a loop that will continue as long as the 
check_winner function in the gameboard 
class reports that the game is not over yet. 
Within the loop, you first take a turn, calling 

take_turn that you just defined. After that 
turn is taken, you switch which player's turn it 
is and increment the number of turns. When 
the loop finally finishes—that is, when the 
check_winner function says that the game 
is over—then you call your declare_winner 
routine to print the result.

 void start_game() {
  numturns = 0;
  playerturn = 1;
  while (check_winner() == 0) {
   take_turn();
   if (playerturn == 1) {
    playerturn = 2;
   } else {
    playerturn = 1;
   }
   numturns++;
  }
  declare_winner();
 }

After the game class, the next thing you 
defined is the abstract base class gamemove 
and its concrete derived classes, connect4_
move and reversi_move.

As the UML shows, your base class has 
just one protected member variable, the 
integer player, and one pure virtual function, 
ask_move.

The ask_move function takes in an integer 
parameter and doesn't return anything; 
therefore, it has a void return type. And 
because it's a pure virtual function, you write 
=0 at the end.

class gamemove {
 protected:
 int player;
 public:
 virtual void ask_move(int) = 0;
};

Notice that the connect4_move class is a 
derived class from gamemove. There is one 
private member variable: an integer giving the 
column into which you are supposed to place 
a piece. 

gamemove

# player : int

+ ask_move(nextplayer : int)

connect4_move

- column : int

+ ask_move(nextplayer : int)
+ c () : int
+ p () : int

http://www.thegreatcourses.com


248Lecture 21 | Using Classes to Build a Game Engine in C++

The connect4_move provides a definition for 
the ask_move function, which was a virtual 
member of gamemove. This takes in the player 
number as a parameter and uses that to set 
the protected member variable, player, that 
was inherited from the gamemove class.

It reads in the column number from the user, 
storing it in the column variable and adjusting 
to start numbering at 0 instead of 1.

Finally, you have the accessor functions, c and 
p, that return the column for the move and the 
player who made the move.

class connect4_move : public 
gamemove {
 private:
 int column;

 public:
 void ask_move(int nextplayer) {
  player = nextplayer;
  cout << "Player " << nextplayer 
<< ", which column do you want to 
place your piece in? ";
  cin >> column;
  column--; // Adjust to make 
first column be 0
 } 
 int c() {
  return column;
 }
 int p() {
  return player;
 }
};

Implementing the reversi_move class is 
a similar process. There are some small 
differences here, highlighting the unique 
differences between the 2 games: The Reversi 
move needs both a row and a column, so 
there are 2 member variables stored and 2 
pieces of information asked for from the user.

class reversi_move : public 
gamemove{
 private:
 int row;
 int column;

 public:
 void ask_move(int nextplayer) {
  player = nextplayer;
  cout << "Player " << nextplayer 
<< ", which ROW do you want to 
place your piece in? ";
  cin >> row;
  cout << "Which COLUMN do you 
want to place your piece in? ";
  cin >> column;
  row--; column--; // Adjust to 
make the numbers start from 0
 }
 int r() {
  return row;
 }
 int c() {
  return column;
 }
 int p() {
  return player;
 }
}; 

But it's clear that both the connect4_move 
and the reversi_move classes are closely 
related, and they both implement the 
necessary functions needed from a gamemove.

Your remaining class implementation is the 
gameboard class.

First, your UML diagram gives the design of 
your classes. Your gameboard class needs 
to have 3 member functions. You saw all 
of these getting called in your game class 
implementation. The actual concrete classes 
will implement those functions, as well as 
provide constructors and member variables 
to hold the particular board needed for 
that game.

gameboard

+ print_board()

+ check_winner() : int

+ take_turn(m : gamemove*)

connect4_board

- rows : int

- columns : int 

- board : vector<vector<int> >

+ connect4_board()

+ connect4_board(r: int, c: int)

+ print_board()

+ check_winner() : int 

+ take_turn(m : gamemove*)

reversi_board

- board : vector<vector<int> >

+ reversi_board()

+ print_board()

+ check_winner() : int 

+ take_turn(m : gamemove*)

http://www.thegreatcourses.com


249Lecture 21 | Using Classes to Build a Game Engine in C++

So, implementing the gameboard class itself is just a matter of 
declaring a class and creating a few pure virtual functions. Because 
you're not providing any implementation of those functions in this 
class, there's nothing more to define.

class gameboard {
 public:
 virtual void print_board()=0;
 virtual int check_winner()=0;
 virtual void take_turn(gamemove*)=0;
};

Let's consider one of the concrete implementations. The connect4_
board implements the board for playing Connect 4. The basic 
operations provided here mirror those of the Connect 4 game that 
was developed in lecture 15. In fact, the code is almost identical 
in many places, with the only differences being that you can use 
member variables for the board and the number of rows and 
columns, rather than passing information through parameters.

Notice that you have a routine, take_turn, that has a parameter 
that's a connect4_move pointer. The routine itself is pretty 
straightforward; it uses the accessor functions you provided in the 
connect4_move class to get the player who made the move and the 
column and updates the board appropriately.

 void take_turn(connect4_move* m) {
  int last_empty = 0;
  int column = m->c();
  int player = m->p();
  while ((last_empty < rows) && (board[column][last_
empty] == 0)) {
   last_empty++;
  }
  last_empty--;
  board[column][last_empty] = player;
 }

But according to the definition of your virtual function, you are not 
supposed to be passing in a connect4_move pointer; it's supposed 
to be a gamemove pointer! However, a gamemove on its own doesn't 
have the specific member functions you need, such as getting the 
column number. So, what you need is a connect4_move pointer and 
what you have to implement is a gamemove pointer.

To get from the gamemove pointer to the connect4_move pointer, 
you can simply convert your gamemove pointer to a connect4_
move pointer, just like you would do other type conversions: You 
put the new type in parentheses in front of the previous one. Then, 
everything can be called like you'd hope.

 void take_turn(gamemove* m) {
  take_turn((connect4_move*)m);
 }

You could also look at the implementation of the reversi_board 
class. Some parts of Reversi are easier than Connect 4 while others 
are more complex.

Notice that like the connect4_board case, you have to convert a 
gamemove pointer into a reversi_move pointer to get access to the 
particular move functions.

 void take_turn(gamemove* m) {
  take_turn((reversi_move*)m);
 } 

Also like the connect4_board case, you defined some extra helper 
functions to keep code to a manageable size, because the process 
of looking at adjacent pieces to the left, right, up, down, and on all 4 
diagonals is a lot of code to put into one place. 

http://www.thegreatcourses.com


250Lecture 21 | Using Classes to Build a Game Engine in C++

// QUIZ

1 Assume you have the UML diagram given here:

Implement the classes that are shown. Note that 

you do not need to fill in the actual function 

behavior, but you should set up the functions 

(with empty bodies) appropriately.

So, you create 8 different helper functions, 
each of which is defined as a private member 
function. And you can then call those from 
your take_turn function.

  mark_up(m->r(), m->c());
  mark_down(m->r(), m->c());
  mark_left(m->r(), m->c());
  mark_right(m->r(), m->c());
  mark_diagul(m->r(), m->c());
  mark_diagur(m->r(), m->c());
  mark_diagdr(m->r(), m->c());
  mark_diagdl(m->r(), m->c());

The final piece of your program is the main 
program. You just ask a user which of the 
2 games to play. Depending on the game, 
you declare either a connnect4_move and 
connect4_board or a reversi_move and 
reversi_board. You then create a game, 
using that board and move as arguments to 
the constructor. And you start the game by 
simply calling start_game on that game.

int main() {
 cout << "I can play Connect 4 
or Reversi.  Which do you want to 
play?" << endl;
 cout << "Enter 1 for Connect4, 
anything else for Reversi: ";
 int choice;
 cin >> choice;
 if (choice == 1) {
  connect4_move m;
  connect4_board b;
  game g(b, m);
  g.start_game();
 }
 else {
  reversi_move m;
  reversi_board b;
  game g(b, m);
  g.start_game();
 }
}

And with this, you can actually play the 
game. 

rating 

# user_score : int

+ report(product : string)

product_rating

- purchase_price : float
- review_date : string
- review : string

+ product_rating()
+ report(product : string)
- calc_importance() : int

Click here to see the answer.

READINGS
a Object-oriented design is a topic all 

its own with books written just about 
it. One of the classic books that is still 
widely followed is Design Patterns: 
Elements of Reusable Object-Oriented 
Software by Erich Gamma, Richard 
Helm, Ralph Johnson, and John 
Vlissides.

b There are many uses of UML beyond 
class design, and class descriptions can 
be more complex than what was shown 
in this lecture. For a more detailed 
overview, see www.uml-diagrams.org.

c Ousterhout, A Philosophy of Software 
Design, chaps. 6–9. (Though not 
specifically object-oriented, the design 
principles are useful at this level.)

http://www.thegreatcourses.com
http://www.uml-diagrams.org


251Lecture 21 | Using Classes to Build a Game Engine in C++

// QUIZ ANSWER

1 Here is the corresponding code:

class rating {
 protected:
 int user_score;
 
 public:
 virtual void report(string) = 0;
};

class product_rating : rating {
 private:
 float purchase_price;
 string review_date;
 string review;
 
 int calc_importance() {
  // Code for calc_importance
 }
 
 public:
 product_rating() {
  // Base constructor
 }
 
 void report(string product) {
  // Instatiation of virtual function
 }
};

Notice that the first class, rating, is an abstract class, with a pure virtual 

function, report. It also has a protected member variable, the integer 

user_score. This corresponds to the UML diagram: # indicates a protected 

variable while + indicates that the pure virtual function is public.

Likewise, for the product_rating class, there are 3 private member 

variables (designated in the UML by -). The member variable names and 

types also correspond to the UML. Then, there are 3 member functions 

defined. One of these is the constructor. It is the default constructor, so it 

takes no parameters. It is a public member. The actual instantiation of the 

pure virtual function is also given, and again it is a public member function. 

Finally, one private member function, calc_importance, is also defined. It 

takes no parameters and returns an integer, as the UML diagram indicates.

Click here to go back to the quiz.

http://www.thegreatcourses.com


252Lecture 22 | C++ Templates, Containers, and the STL

// TEMPLATES AND CONTAINERS

Basically, templates are a way of saying that 
a class's member variables, or a function's 
parameters, are not of a specific type but 
instead are of some generic template type. 
So, rather than the class or function working 
only for one specific type, it can be used for 
any types that match some template. When 
you actually want to use a specific class or 
function, you then specify the specific type 
that the template will take on.

For example, the vector is a templated class. 
It lets you store a list of any type of object, 
but then to use it, you have to create a vector 
that stores some particular type. So, although 
vectors have been referred to as a class, they 
are really a more general container capable of 
holding a variety of unrelated classes.

vector<int> v1;
vector<float> v2;
vector<string> v3;
vector<my_class> v4;

The angle brackets, as used when declaring 
vectors, are used to specify what particular 
type an instance of a class or function will 
take on. The type that's specified in the angle 
brackets is the type that replaces the template 
type throughout the class or function.

22 IN THIS LECTURE:

Templates and Containers

Stacks

Program 22_1

Queues

Program 22_2

Lists and Iterators

Program 22_4

Program 22_7

Program 22_8

Program 22_9

Program 22_10

Quiz

Quiz Answers

C++ Templates, Containers, 
and the STL

When you have an idea that's so general that it's not really tied down by 
any single class hierarchy, that's when you turn to generic programming. 
While procedural programming orients the program around functions and 
object-oriented programming orients the program around classes (and 
their objects), generic programming orients programs around very general 
concepts of data structures and algorithms. You can think of generic 
programming as a way of defining classes and functions that are not tied 
to any specific data type. Instead of using a data type, it uses a template.

In ordinary English, the term generic 
often means "not special" or even 
"not as good," but in programming, 
the term generic means that you are 
"generalizing" some concept or idea.

http://www.thegreatcourses.com


253Lecture 22 | C++ Templates, Containers, and the STL

There are several very general tasks and 
ideas—things that are very widely applicable—
that work well with templates.

The most common of those general concepts 
are made available to programmers through 
the Standard Template Library (STL), which 
is a library—a collection of templated classes 
and functions that can be included into the 
program. It's standard in the sense that there 
is a clearly defined set of what is expected 
to be provided in the library. And it uses 
templates, meaning that it provides generic 
container structures and algorithms.

The STL is likely all you'll need for generic 
programming; you will probably rarely find 
that you want to write your own templated 
classes or functions.

The vector class is an example of a container, 
and it's just one of several generic containers 
that are provided in the STL.

Containers are classes that collect several 
instances of some type together in a way that 
allows certain operations to be performed 
very efficiently.

Different containers will have different 
operations—different member functions—that 
they support well.

The common theme is that they are templated 
classes, so they can work with many different 
data types; you specify the type the container 
will use when you declare a specific container.

For example, vectors are very good for 
keeping elements in order; the order that 
elements of the vector are in is the order in 
which they got pushed onto the back of the 
vector. It's also very easy to add or remove 
elements at the end:

 » push_back adds a new element to the end of 

the vector.

 » pop_back removes an element from the end of 

a vector.

Vectors are also great at letting you access an 
element at a specific point in the vector. This is 
referred to as random access because you can 
access any point given at random; you don't 
have to access them in a particular order. But 
a vector is not very good at inserting a new 
element at the beginning, or somewhere in the 
middle, of an existing vector.

Here's a short menu of the most useful 
containers that are in the STL.

Containers
Container 
Adaptors

vector stack

deque queue

list priority queue

forward list

You can order from this menu in one of 
2 ways:

 » You can call for a container that's implemented 

in a fundamentally unique way. Such containers 

include vectors, deques, lists, and forward lists.

 » There are also container adaptors, which include 

stacks, queues, and priority queues. You can 

think of a container adaptor as something that's 

not a new container on its own, but it makes use 

of the other containers to provide some set of 

functions.

In practice, you use containers and container 
adaptors in very similar ways. Either way, all 
you do to order from the menus is #include, 
for example, stack.

A programmer who is not using the 
STL is missing a huge chunk of the 
advantages that C++ provides.

The STL can save a lot of time 
in coding by providing efficient 
implementations of data structures 
and algorithms you'd want to use. 
And the STL is simple to use; #include 
gets you access to a generic structure 
or the algorithms it provides.

http://www.thegreatcourses.com


a

254Lecture 22 | C++ Templates, Containers, and the STL

// STACKS

If you want to keep track of a set of actions 
you took so that you can undo back to any 
point, you can do this using a very basic 
container adaptor that provides one of the 
most basic operations needed in computing. 
This is the stack, which is what's called a LIFO 
(last in, first out) structure. It means that the 
last thing you put on the stack is the first thing 
that comes out of the stack.

In C++, you can declare a stack of some 
particular type and then perform one of a few 
operations. There are 4 main operations that 
you need to do to get just about everything 
you need to with a stack:

 » push adds a new element to the top of 

the stack.

 » top is used to see what element is on top of 

the stack.

 » pop removes the top element from the stack 

(whatever it is).

 » empty returns a Boolean value that tells you 

whether or not the stack is empty.

Like most classes in the STL, there are also 
a few other functions defined, such as a 
size function giving the size of the stack, 
but these 4 are the only ones you need on a 
regular basis.

In this Program 22_1, notice that you #include 
stack at the beginning of the program (4).

Then, in your main program, you declare 
a stack, s. Because the stack is a generic 
container, you have to give it a particular 
type—in this case, that's the integer type. 
So, you write stack and then int in angle 
brackets, and then you give the name of the 
stack variable, which in this case is s (8).

You start by pushing 3 values onto the stack: 
10, 15, and 20; that is, you use the member 
function push and pass in the values 10, then 
15, and then 20 as arguments. This will create 
a stack that should have 10 first so that it's on 
the bottom, then 15 on top of that, and then 
20 on top of that (a).

Next is a loop that continues as long as the 
stack is not empty. You use !s.empty() as the 
condition for the while loop (12).

For each iteration of the while loop, you do 2 
things. First, you print out whatever is on top, 
using the top member function to have access 
to that top element (13). Then, you pop off 
the top element, reducing the size of the stack 
by 1, using the pop command (14).

And if you run this code, you indeed see the 
numbers printed off in reverse order.

Remember that the angle brackets 
are the way of specifying a particular 
type—the type that will replace the 
template in the class definition.

// Program 22_1

// Stack example

#include<iostream>

#include<stack>

using namespace std;

int main() {

 stack<int> s;

 s.push(10);

 s.push(15);

 s.push(20);

 while (!s.empty()) {

  cout << s.top() << endl;

  s.pop();

 }

}

http://www.thegreatcourses.com


b

255Lecture 22 | C++ Templates, Containers, and the STL

// QUEUES

An alternative container adaptor gives you 
a FIFO (first in, first out) data structure. This 
is called a queue, and it's very much like the 
stack, but instead of the last thing in being 
the one you can access, it's the first thing 
in. Queues are used to represent any sort of 
process where the first thing into the line is the 
first thing you want out.

It has 4 main operations, just like the stack did:

 » push adds an element to the end of the queue.

 » front tells you which element is in the front 

of the line (analogous to top from the stack 

commands).

 » pop removes the element at the front of 

the queue.

 » empty again tells you if the queue is empty 

or not.

In Program 22_2, notice that now you 
#include queue at the beginning (4).

In the main body of the code, you declare 
a queue, where the type that you want the 
queue to hold is an integer. So, you write 
queue<int> and then the name of the queue, 
which in this case is just q (8).

You can push the numbers 10, 15, and 20 into 
the queue (b), just like you pushed into the 
stack, and you can have a loop that continues 
as long as the queue isn't empty (12).

Inside the loop, you'll print the element at the 
front by using the front member function and 
outputting q.front() (13). Then, you remove 
that front element by calling pop (14).

And you see that the elements came off in the 
same order you put them in.

In addition to the vector, stack, and queue, 
another container is the deque (short for 
doubly ended queue).

A deque works a lot like a vector. It's just that 
instead of only having push_back and pop_
back, it has push_front and pop_front, too. 
It has basically all the other operations that a 
vector has: You can get the size using size or 
make it empty using clear. You can access 
elements using square brackets with the 
element number or using the at command so 
that you can guarantee you're not reading or 
writing past the end of the allocated memory.

But it's less efficient than a vector, and there is 
rarely an instance where you need all the extra 
functionality that a deque provides.

// Program 22_2

// Queue example

#include<iostream>

#include<queue>

using namespace std;

int main() {

 queue<int> q;

 q.push(10);

 q.push(15);

 q.push(20);

 while (!q.empty()) {

  cout << q.front() << endl;

  q.pop();

 }

}

http://www.thegreatcourses.com


c

256Lecture 22 | C++ Templates, Containers, and the STL

// LISTS AND ITERATORS

While these 4 containers work well for adding 
and removing new elements at the ends, 
if you want to insert or delete elements at 
arbitrary points, then a container called a list is 
particularly useful.

But to understand how to use lists, you first 
need to understand iterators.

You've encountered the idea of iterating 
through a vector. You usually have some index, 
such as i, that you put in a for loop and let 
take values from 0 to 1 less than the vector 
length. So, you can access element 0, then 1, 
then 2, and so on, until the end of the vector.

An iterator is a more general form of that 
index. It works like a pointer to the element in 
a container.

To use an iterator, you would start at the 
beginning of the vector and then access 
element after element until you reached the 
end. For a container, you can get a begin 
iterator, which points to the first element. You 
can increment the iterator so that it goes to 
the next element, then the one after that, and 
so on, all the way through. Finally, you can 
stop when you reach the end, which will be 
after the last element in the container.

An iterator is a new type that you can use for 
your variables. When you declare an iterator, 
you first give the container (such as a vector 
of integers or a list of floats) that it will iterate 
over, then ::, and then the keyword iterator. 
This defines the type of the variable you're 
declaring.

For example, in Program 22_4, you declare 
a vector of integers where you push 3 values 
onto the back: 10, 20, and 30 (c).

Next, you create an iterator that can iterate 
over a vector of integers, named my_iterator. 
So, you write vector<int>::iterator my_
iterator (12). Again, you can think of this as 
being like a pointer to an element of a vector 
of integers.

You can initialize this by assigning the iterator 
to the beginning of the container. For your 
vector, and for many other containers, the 
member function begin will return an iterator 
at the first element in the container. In the code, 
you write my_iterator = v.begin() (13).

There's also an end function associated with 
most containers, and it indicates a value after 
the last element in the container. In other 
words, there's not an element at the "end"; it 
is not pointing to the last element, but instead 
to some part of memory that you don't care 

about, other than to know that you're no 
longer in the container. So, in this code, you're 
going to loop as long as you're not at the end. 
So, you write while (my_iterator != v.end 
()) (14).

// Program 22_4

// Iterator example

#include<iostream>

#include<vector>

using namespace std;

int main() {

 vector<int> v;

 v.push_back(10);

 v.push_back(20);

 v.push_back(30);

 vector<int>::iterator my_
iterator;

 my_iterator = v.begin();

 while (my_iterator != 
v.end()) {

  cout << "This iterator 
refers to: " << *my_iterator 
<< endl;

  my_iterator++;

 }

}

http://www.thegreatcourses.com


d

257Lecture 22 | C++ Templates, Containers, and the STL

Inside the loop, 2 key things happen:

 » You dereference the iterator—that is, like a 

pointer, you get the value of the thing the 

iterator is referring to. In this case, you output 

it. So, the first time through the loop, you'll be 

looking at the first element of the vector, which 

is 10, so 10 is output.

 » The other thing that happens is something that 

is guaranteed to be possible for every iterator: 
an increment. This is the ++ you would use for 

incrementing an index value. It's OK to write 

++ before or after the iterator; this moves the 

iterator to the next element in the container.

So, in this case, you have a loop that causes 
the iterator to go to every element in the 
container, and you print it out. 

There's a feature in C++ that will let 
you avoid writing the long declaration 
vector<int>::iterator. You can just use 
auto, and the compiler will automatically infer 
the type of the variable needed.

You can actually use auto in other contexts, 
too, to get the type of a variable automatically 
rather than having to specify it. It still 
has a fixed, single type, but it saves the 
programmer work.

In Program 22_7, you create a vector with 3 
elements: 10, 20, and 30 (8). You then declare 
an iterator named iter (9). You set this to 
begin and increment it once so that iter is 
now at the second element in the vector (d). 
You call an insert command for the vector, 
passing in iter and the value you want to 
insert. So, this value, 40, gets inserted before 
the second element (12).

When you print out the contents of the vector, 
you see that the elements are in order, as 
expected.

There's a similar process for erasing data from 
a container.

Iterators are important for specifying routines 
to insert or erase data in a container.

Inserting and deleting are not very efficient for 
containers like vectors and deques. Instead, 
there's another container that is much better 
at handling insertion and deletion: the list, and 
its related form, the forward list.

A C++ list is referred to by computer scientists 
as a linked list. Each element exists in a single 
place in memory, not necessarily contiguous 
with the next element in the list. Each element 
has a pointer to the next element in the list. 
And a doubly linked list also has a pointer 
back to the previous element.

So, if you are at one element, it's easy to get 
to the next one, and in a doubly linked list, 
it's also easy to go to the previous one. And 
you can easily see how an iterator would go 
through the list from beginning to end.

In very rare cases, iterators can't be 
dereferenced.

This way of iterating through a 
container like a vector is very 
common, so it's not unusual to see 
a for statement that starts from 
the beginning of the container and 
iterates through to the end. And 
because the iterator is usually only 
defined for that loop, as you loop 
over the elements of the container, it's 
common to put the declaration into 
the for loop itself. 

// Program 22_7

// Insertion example on a vector

#include<iostream>

#include<vector>

using namespace std;

int main() {

 vector<int> v = { 10, 
20, 30 };

 vector<int>::iterator iter;

 iter = v.begin();  // Iterator 
is at first element

 iter++;  // Now at second 
element

 v.insert(iter, 40);

 for (int i = 0; i < 
v.size(); i++) {

  cout << v[i] << endl;

 }

}

http://www.thegreatcourses.com


g

e

f

258Lecture 22 | C++ Templates, Containers, and the STL

But a list does not allow you to jump directly 
to an element somewhere in the middle.

The advantage to lists is that you can 
insert into them very easily. If you inserted 
something into a vector, you'd have to 
potentially copy huge amounts of information 
as you basically slide the existing elements 
down one spot.

With a list, though, all you have to do is 
take the new thing to add and update a few 
pointers. Likewise, merging 2 lists is a very 
quick task, while vectors or deques would 
require copying one of the 2 lists.

When you type list, you get a doubly linked 
list. A forward_list gets you a singly linked 
list and will allow pushing only on the front 
of a list. And insertions take place after the 
element that an iterator is referring to.

Suppose you want to have a list of instructions 
for making a peanut butter and jelly sandwich. 
Notice in Program 22_8 that you #include 
list at the beginning (5). List is templated, 
so you create a list, named instructions, 
of type string (9).

You can add elements to the front or back of a 
list using push_back and push_front, just like 
you could with a deque. In this case, there are 
3 steps of making the sandwich (e).

If you left out an important step, such as 
adding peanut butter, you can use insertion to 
add the element in. You can create an iterator 
that you increment to refer to the second 
element (f). Then, calling insert at that 
point will insert a new element just before the 
second element (16).

And you can use an iterator to loop through 
and print out the resulting elements in order. 
Notice that the instruction you put in the 
second spot—Put on peanut butter—
appears in the correct place (g).

// Program 22_8

// List example, including insertion

#include<iostream>

#include<string>

#include<list>

using namespace std;

int main() {

 list<string> instructions;

 instructions.push_back("Get bread");

 instructions.push_back("Put on jelly");

 instructions.push_back("Put two halves together");

 list<string>::iterator insert_spot;

 insert_spot = instructions.begin();  // Refers to first element

 insert_spot++;  // Refers to second element

 instructions.insert(insert_spot, "Put on peanut butter");

 for (auto iter = instructions.begin(); iter != instructions.end(); iter++) {

  cout << *iter << endl;

 }

}

http://www.thegreatcourses.com


h

i

259Lecture 22 | C++ Templates, Containers, and the STL

The forward_list is very similar, but you 
can only call push_front, or insert after 
an element. In this code, you push your 
instructions in reverse order because they're 
getting pushed onto the front of the list (h).

Then, you have an iterator that is set to the 
second element (i). When you call insert_
after at that point, you insert your instruction 
after the second element (16).

So, printing the whole list gives you your 
instructions. Notice that now the peanut butter 
is getting put on after the jelly, because the 
insertion would always come after the element 
you were pointing to.

Iterators can also make your use of vectors 
and data structures more powerful by using 
the for loop in a new way. If you have a class 
that can be iterated through, you can form 
a special for loop. Basically, you can set up 
a for loop that has a variable that takes on 
the value of each element in a container. The 
for loop will iterate from beginning to end, 
and the variable will take on each value in 
succession.

The syntax for this is to write for and then, 
in parentheses, 2 items separated by a colon. 
The first of these is the variable type and the 
variable name. When you use this type of 
function, the variable is only going to be in 

scope during the loop, so it is not a restriction 
to make it be declared only in the for 
statement.

Note that you can use auto for the type if 
you want. However, if you're going to want to 
manipulate the elements of the container, you 
should make the type a reference.

After the type and variable name, there's 
a single colon and then the name of the 
container that you want to iterate through.

// Program 22_9

// Forward_list example, including insertion

#include<iostream>

#include<string>

#include<forward_list>

using namespace std;

int main() {

 forward_list<string> instructions;

 instructions.push_front("Put two halves together");

 instructions.push_front("Put on jelly");

 instructions.push_front("Get bread");

 forward_list<string>::iterator insert_spot;

 insert_spot = instructions.begin();  // Refers to first element

 insert_spot++;  //Refers to second element

 instructions.insert_after(insert_spot, "Put on peanut butter");

 for (auto iter = instructions.begin(); iter != instructions.end(); iter++) {

  cout << *iter << endl;

 }

}

http://www.thegreatcourses.com


260Lecture 22 | C++ Templates, Containers, and the STL

In Program 22_10 is your list with the steps to 
make a peanut butter and jelly sandwich.

In line 19, you have a for statement. The 
container, the list, is made up of strings, so 
you are going to have a new variable—step, 
in this case—that is of a string type. You're 
going to want to manipulate elements of 
instructions, so you declare step to be 
a string reference, not just a string. Then, 
there is a colon followed by the name of the 
container, instructions.

Within the loop, you can do anything you 
want to do with step and it will refer to the 
elements of the list itself. So, in this case, you 
are adding the string Step: to the beginning 
of each element (16). On the first iteration of 
the loop, then, the value of the first element of 
instructions has Step: added to the front. 
The loop ends up adding this to all elements.

Then, you can have another loop through 
the elements of instructions, this time to 
print out the results. You set up your loop—
for(auto step : instructions)—which 
says you're going to iterate through the entire 
container instructions, and step is going to 
refer to the element of instructions on each 
such iteration (19).

Inside the loop, when you print out the values, 
you see that they were indeed changed by the 
previous loop (20). 

READINGS
a Stroustrup, Programming Principles and 

Practice Using C++, chap. 20.

b Lippman, Lajoie, and Moo, C++ Primer, 
sections 3.4 and 9.1–9.3.

Exercise

Click here to see the solution.

Which container is the best to use in each of the following scenarios?

1 You're running a business and want to process orders in the same order they arrive in.

2 You have a long sequence of directions, and you want to be able to examine any step 
in detail.

3 You're keeping track of movies you want to see in order from the ones you're most 
interested in to least interested in. You'll want to be able to add new movies that come 
out or cross off movies once you've watched them.

// Program 22_10

// Example of for-each statement

#include<iostream>

#include<string>

#include<list>

using namespace std;

int main() {

 list<string> instructions;

 instructions.push_back("Get 
bread");

 instructions.push_back("Put on 
peanut butter");

 instructions.push_back("Put on 
jelly");

 instructions.push_back("Put 
two halves together");

 for (string& step : 
instructions) {

  step = "Step: " + step;

 }

 for (auto step : 
instructions) {

  cout << step << endl;

 }

}

http://www.thegreatcourses.com


261Lecture 22 | C++ Templates, Containers, and the STL

// QUIZ

1 Which container would best be used in each of the following situations?

a You have several phone messages coming in and want to handle 

them in the order they were received.

b You have a phone bill arriving each month and want to be able to look 

up any month's bill.

c You are planning a road trip and have listed several stops along the 

way but want to be able to add a new one partway through.

d You are having a conversation and keep going off on new topics. 

You want to keep track of the conversation so that once you finish 

one topic, you can return to the previous one—and then when that is 

done, the one before that, etc.

2 Write a program to keep track of the order of people who arrive to meet 

with you. You should repeatedly ask for a name, or, if the user types next, 

you should print the name of the next person who should be met. An 

example of a run of this might be as follows:

John
James
next
The next person to see is: John
Joseph
next
The next person to see is: James

3 Write a function that takes in a vector of integers and then uses an iterator 

to print out each element, one per line. 

Exercise Solution

Click here to go back to the exercise.

Click here to see the answers.

1 This is perfect for a queue, which has the FIFO property.

2 The sequence of directions would work well with a vector, which lets you easily access any point in the middle.

3 This is good for a list, which lets you easily add or remove movies at any point in the middle.

http://www.thegreatcourses.com


262Lecture 22 | C++ Templates, Containers, and the STL

// QUIZ ANSWERS

1 There may be more than one type that is 

appropriate for each situation, but the following 

are the most natural containers for the 

given task:

a Queue. This is an example of a FIFO 

ordering, which is what queues are best 

used for.

b Vector. The vector is good for adding new 

items at the end and for random access— 

directly accessing any point in the middle.

c List. Lists keep items in sequence but make 

it easy to add to (or delete from) the middle. 

Practically, though, a vector would work 

about as well here, unless the list of stops 

was extremely long.

d Stack. The idea here is that as the 

conversation continues, if there is a new 

topic, it is added to the stack. If the topic is 

finished, then it is popped from the stack, 

and you return to the previous topic.

2 Here is one way to implement such a program:

1 #include<iostream>
2 #include<queue>
3 #include<string>
4 using namespace std;
5 
6 int main () {
7  queue<string> names;
8  string s;
9  cout << "Enter a name, or 

type \"next\" to get the next 
person to see" << endl;

10  while(true) {
11   cin >> s;
12   if (s=="next") {
13    cout << "The next 

person to see is: " << names.
front() << endl;

14    names.pop();
15   } else {
16    names.push(s);
17   }
18  }
19 }

Notice that a queue is used to keep track of 

the names. The loop continues indefinitely, 

and in each iteration of the loop, you read in 

a string. If it is next, then you print the item at 

the front of the queue (and then remove that 

item). Otherwise, you just add the name onto 

the queue.

3 Here is one way to do this:

void print_elements(vector<int> v) {
 vector<int>::iterator i;
 for(i=v.begin(); i != 

v.end(); i++) {
  cout << *i << endl;
 }
}

Notice that you declare an iterator for the vector. 

Then, you loop from the begin() to the end() 

of the vector, incrementing the iterator each 

time. You output the element of the vector by 

dereferencing the pointer. There are several other 

ways the same goal could be achieved, though.

Click here to go back to the quiz.

http://www.thegreatcourses.com


263Lecture 23 | C++ Associative Containers and Algorithms

23 IN THIS LECTURE:

Containers

Program 23_1

Program 23_2

Program 23_3

Program 23_4

Program 23_5

Program 23_6

Templated Functions

Program 23_8

Program 23_11

Program 23_12

Quiz

Quiz Answers

C++ Associative Containers 
and Algorithms

The Standard Template Library (STL) provides a wide variety of data 
structures and algorithms that you can use to write powerful and 
efficient code in C++. You've seen previously a set of unitary containers 
and container adaptors that you can use to hold individual elements one 
by one. But there are also containers—called associative containers—that 
bring, or associate, 2 or more types of elements together. Also in the STL 
are algorithms, which provide an even more powerful set of standard 
tools for processing data.

// CONTAINERS

/* PAIRS */

The simplest of the associative containers is 
the pair. There are many times that you want 
a very simple structure that just joins 2 things 
together. For example, you might be keeping 
track of people and want a person to have 
an age and a name. The pair provides a quick 
and easy way of joining 2 items into one 
structure.

A pair takes 2 templated types: the type of 
the first item and the type of the second item. 
When there are 2 or more types needed for 
a template, they are separated by commas 
within the angle brackets.

To declare the pair of age and name, you'll 
want an integer and a string. You'll write 
pair<int, string> and then the name of the 
pair, which in this case is p (8).

// Program 23_1
// Pair example
#include<iostream>
#include<string>
using namespace std;

int main() {
 pair<int, string> p;
 p.first = 45;
 p.second = "John";
 cout << p.second << " is " << 
p.first << " years old." << endl;
}

http://www.thegreatcourses.com


To access the first element of a pair, you 
use .first. And the second element is just 
.second. So, to assign a value to the pair, you 
can write p.first = and p.second =. And to 
access the values in the pair, you again use 
first and second: cout << p.second << " is 
" << p.first << " years old." << endl.

You could also make your own class that 
combined 2 specific types, and one advantage 
of doing that over a pair is that the class name 
would give an indication of what the intention 
of the class is. You can get around this by 
using a typedef, which is a way of creating a 
new name for a type. The syntax is to write 
typedef, then the actual type, and then the 
name you want to use to refer to that type.

For example, if you didn't like using int and 
wanted to call integers numbers, you could 
write typedef int number and then you 
could declare things of type number—they'd 
still be integers.

So, in Program 23_2, you could create a new 
type, person, that is just a pair of an integer 
and a string by writing typedef pair<int, 
string> person. This then lets you declare 
variables of type person, and they'll be 
integer-string pairs (7). 

While this lets you have a more descriptive 
name overall, accessing the member variables 
is still going to be done with first and 
second (12), and there's not an easy way to 
extend this if you ever decided you wanted 
something different.

Another command available for a pair is 
make_pair, which takes in 2 arguments and 
returns a pair of those 2 arguments. It can 
be a useful way of setting the elements in 
one statement rather than with 2 separate 
assignments (11).

/* TUPLES */

If you want to group more than 2 items 
together, you can use a tuple, which lets 
you group an arbitrary number of different 
types of objects together. You just list those 
types in the angle brackets. You also have 
a make_tuple command, which is similar to 
make_pair.

The downside of a tuple is that you don't 
have a simple first and second to access 
individual elements. Instead, there's a function 
named get that has a really odd form: You 
have to put the element of the tuple you want 
in angle brackets after get. In the parentheses 
afterward, you put the tuple name. That will 
give you access to that element of the tuple.

264Lecture 23 | C++ Associative Containers and Algorithms

// Program 23_3
// Tuple example
#include<iostream>
#include<string>
#include<tuple>
using namespace std;

int main() {
 // Tuple will hold name, team, 
age, height, weight 
 tuple<string, string, int, 
double, double> c;
 c = make_tuple("James Smith", 
"Cubs", 22, 73.5, 182.1);
 cout << get<0>(c) << " is " << 
get<3>(c) << " inches tall and 
weighs " 
  << get<4>(c) << " pounds." 
<< endl;
}

// Program 23_2
// Using typedef to create a new 
name for a type
#include<iostream>
#include<string>
using namespace std;

typedef pair<int, string> person;

int main() {
 person p;
 p = make_pair(45, "John");
 cout << p.second << " is " << 
p.first << " years old." << endl;
}

http://www.thegreatcourses.com


b

a

265Lecture 23 | C++ Associative Containers and Algorithms

Suppose you're running a business where 
you're letting people buy on credit and you 
want to keep track of their name, how many 
purchases they make, and how much they 
owe you.

In this case, you'd want to create a tuple 
storing 3 types: a string for the name, an 
integer for the number of purchases, and a 
double that can hold decimal values for the 
amount owed.

The tuple type can be named customer 
to make it more descriptive (8). Then, you 
can use this type, customer, to declare a 
variable, c.

You'll have a make_tuple command that you 
can use to make an instance of that tuple 
type. Here, the tuple says that John made 3 
purchases and owes $100 (12).

You can then use a cout statement to access 
the elements. To access the first element, 
you write get<0>(c), which outputs John. 
Then, get<1>(c) gives you 3 purchases, and 
get<2>(c) gives you 100.0 in dollars (a).

The get function can also assign values to 
the elements or manipulate them. Because it 
returns a reference, you can do anything to the 
result of get that you would have done to the 
element. In this code, you're incrementing the 
second element, indicating one more purchase, 
and increasing the third element by $50 (b).

/* PRIORITY QUEUES */

The priority queue only takes in one type, so 
it's not associative, but it's often used with 
associative containers like pairs or tuples.

The idea of a priority queue is that you want 
to be able to insert items into the container 
and then pull them out in order from greatest 
to smallest. The values of a priority queue are 
the priority, or how important that element is. 
So, each time, the element at the front of the 
queue should be the one with the greatest 

priority. Each time you pull an element out 
of the queue, it will be the highest-priority 
element in the container.

To create an instance of a priority queue, 
you give a single data type. For the priority 
queue to work, this data type must have a 
less-than comparison operator defined; this is 
how elements are compared to find which is 
largest. If you want to have a priority queue of 
your own type, make sure it has < defined.

When using priority_queue with a pair or a 
tuple, the comparison is based on comparing 
the first element, and, if they are equal, then 
the second. For a tuple, this process continues 
with the remaining elements. Either way, the 
comparison is already defined so that you 
don't have to explicitly create a less-than 
comparison.

// Program 23_4
// Tuple example - extended
#include<iostream>
#include<string>
#include<tuple>
using namespace std;

typedef tuple<string, int, 
double> customer;

int main() {
 customer c;
 c = make_tuple("John", 3, 
100.0);
 cout << get<0>(c) << " 
has made " << get<1>(c) << " 
purchases and owes $" 
  << get<2>(c) << endl;
 get<1>(c)++;
 get<2>(c) += 50.0;
 cout << get<0>(c) << " 
has made " << get<1>(c) << " 
purchases and owes $" 
  << get<2>(c) << endl;
}

http://www.thegreatcourses.com


c

266Lecture 23 | C++ Associative Containers and Algorithms

Pairs are especially common when using 
priority queues, because you often need to 
have 2 pieces of information: some value that 
you are using to determine priority and the 
actual object associated with that value.

Suppose you wanted to have a priority queue 
where you were pulling people out from oldest 
to youngest. Then, you could associate a 
pair where the first element was age and the 
second element was the person. The largest 
age will always get pulled out.

You can use the following when writing code:

 » push adds elements to the priority queue.

 » top accesses the highest-priority element.

 » pop removes the top element.

 » size gets the size of the priority queue.

 » empty returns whether the priority queue is 

empty or not.

Consider Program 23_5. A priority queue 
is contained within the queue library, so 
you #include queue (5). You use typedef 
to create a person type that consists of 
an integer and string pair (8). The integer 
will be the age, and the string will be the 
person's name.

You then declare a priority_queue of type 
person. Because the first element of a person 
is the age, the highest-priority element in the 
queue will be the person with the largest age. 
The priority queue is named pq (11).

Next, you insert 4 different elements into pq. 
For each, you call pq.push, and then in the 
parentheses, you give a person—that is, an 
integer-string pair. To create this pair, you use 
the make_pair function, passing in one integer 
and one string every time you call it. Overall, 
you'll insert Jack at age 18, Jill at age 16, 
Joe at age 19, and Jessica at age 17 (c).

Next, you look at the first element in the 
priority_queue. This is the element that is 
the largest, so in this case, it's the one with 
the greatest age. You write pq.top() to get 
the oldest person in the group. Then, using 

.second, you get the name of that person. 
This is what is output. In this case, Joe, who 
is 19, is first in the priority_queue, so Joe is 
output (17).

After popping the first element off of the 
priority_queue (18)—that is, after removing 
Joe—you can again look at the top element. 
This time, it's the oldest of the remaining 
elements, Jack (19).

// Program 23_5
// Priority Queue example
#include<iostream>
#include<string>
#include<queue>
using namespace std;

typedef pair<int, string> person;

int main() {
 priority_queue<person> pq;
 // Could have been priority_queue<pair<int, string> > pq;
 pq.push(make_pair(18, "Jack"));
 pq.push(make_pair(16, "Jill"));
 pq.push(make_pair(19, "Joe"));
 pq.push(make_pair(17, "Jessica"));
 cout << "The oldest person in the group is: " << pq.top().second << endl;
 pq.pop();
 cout << "The next oldest person in the group is: " << pq.top().second << endl;
}

http://www.thegreatcourses.com


d

e

267Lecture 23 | C++ Associative Containers and Algorithms

/* MAPS */

The map is a way to associate one value, 
called a key, with another of any type. Maps 
come in 2 varieties: the standard map and 
the unordered_map. The difference between 
them is that a map can be iterated through 
in order from least to greatest, while an 
unordered_map cannot. Generally, this means 
that an unordered_map is faster to use.

A map uses square brackets to index specific 
values. This is similar to how a vector or an 
array uses square brackets to access one 
element of the array. There, the index that you 
can put in that square bracket runs from 0 to 
one less than the size of the vector or array.

But with a map, you can use almost any value 
as the index—not just an integer from 0 to 
some other integer. This index is just the key. 
So, if you wanted to store the number of bills 
of different currency denominations, you could 
use 1, 5, 10, 20, and 100 as your keys. Or 
you could use a string as the key so that the 
indices are cat and dog, for example.

Say you're running an animal shelter and want 
to keep track of how many of each type of 
animal are in the shelter. You'll use a map for 
that, so you #include map at the beginning (5).

Maps are templated with 2 types: first the type 
of the index and then the type of value that 
the index maps to. In this case, you'll want to 
have an animal name as your index, so the 

index will be a string. And you're keeping 
track of how many of each animal there are, 
so you'll have an integer value stored for each 
of them. So, you declare your map variable, 
numanimals, by writing map<string,int> 
numanimals (9).

Now you can assign values to this map. For 
example, if you want to note that there are 
12 cats in the shelter, you can write the map 
name, numanimals, followed by the string cat 
inside of square brackets, and assign the value 
12 to that. Likewise, you can assign values for 
dog and rabbit (d).

In this program, you then ask a user which 
animal is of interest (e). You first check 
the count for that animal (17). If the count 
is not 0—that is, if it's 1—then you will 
output the value stored in numanimals by 
outputting numanimals[whichanimal], where 
whichanimal is the string the person entered 
(18). If the count was 0, it means you have 
no record for that animal, so you output a 
short message that the animal is not in the 
shelter (21).

If a user enters an animal that you have data 
for, such as dog, you'll get an output that there 
are 23 dogs in the shelter. 

Sometimes you'll hear a map referred 
to as a dictionary, because it provides 
a way to associate an "entry"—that is, 
the key—with its "definition," or value.

// Program 23_6
// Map example - animal shelter
#include<iostream>
#include<string>
#include<map>
using namespace std;

int main() {
 map<string, int> numanimals;
 numanimals["cat"] = 12;
 numanimals["dog"] = 23;
 numanimals["rabbit"] = 2;

 string whichanimal;
 cout << "Which animal do you want a count of? ";
 cin >> whichanimal;
 if (numanimals.count(whichanimal) > 0) {
  cout << "There are " << numanimals[whichanimal] << " in the shelter." << endl;
 }
 else {
  cout << "That animal is not in the shelter." << endl;
 }
}

http://www.thegreatcourses.com


268Lecture 23 | C++ Associative Containers and Algorithms

// TEMPLATED FUNCTIONS

In addition to containers, the STL also offers a 
set of standalone functions that can be called 
with a wide range of argument types. These 
are called templated functions, because they 
are not just defined for a single type or set of 
types but can take on a whole range of types.

These templated functions are all contained 
in the STL algorithm library, so to use any of 
them, you just #include algorithm.

An algorithm can be thought of as a set of 
steps to follow to handle data or accomplish 
some other task.

The STL algorithm library contains more 
than 80 different templated functions, each 
implementing some algorithm. Templated 
functions can take a range of various types as 
input parameters. The STL algorithm library's 
functions fall into categories ranging from 
simple minimum and maximum computation 
to modifying sequences.

The point of the algorithm library is not to 
provide functions you couldn't create on your 
own, but instead to provide reliable, efficient 
implementations of commonly used algorithms 
that can be applied across a wide variety of 
data types.

Three of the most common templated 
functions in the STL are find, sort, and 
lower_bound.

Maps come with a variety of predefined member functions, including 
the following:

 » at refers to an element (like a vector).

 » begin gets the iterator at the very beginning.

 » end gets the iterator just after the end.

 » count returns either 0 or 1, noting whether that index appears.

 » find gives an iterator to some particular element.

Exercise 1

Click here to see the solution.

Suppose you wanted to create a dictionary 
with words and definitions using the 
map structure. How would you go about 
declaring that and then putting an 
entry in?

Algorithms describe the critical functionality of most major computer programs, from operating systems to search engines—all the 
types of programs that C++ tends to be used for.

http://www.thegreatcourses.com


f

269Lecture 23 | C++ Associative Containers and Algorithms

/* FIND */

find takes in 3 parameters: a starting iterator, an ending 
iterator, and a value to search for. It returns an iterator: either 
one pointing to the first occurrence that matches the value 
being searched for, or, if the value is not in the container, then it 
returns the ending iterator.

Suppose you have a list of ages of participants in some study 
and want to allow a user to check whether certain ages 
participated. Notice that algorithm is #included (5).

In this case, you create a vector of integers, named ages, with 
the ages of the participants. Notice that some ages, such as 21 
and 22, are repeated (9).

Then, you have an infinite loop where you continually ask the 
user what age to search for (f).

In the loop, you use the find function to try to find the 
particular age the person entered. You pass in ages.begin, 
which is an iterator pointing to the beginning of the ages vector, 
and ages.end, which is an iterator pointing just past the end 
of the ages vector. The third parameter is the value you're 
searching for—in this case, the integer the user entered (17).

find will return an iterator. If the value the user entered is found, 
then the iterator will not be pointing to the end iterator (18). So, 
you can just verify that the age was found, and for proof, you 
print the value that the iterator is pointing to (19). If the value 
was not found, then the iterator will point to the end iterator, so 
you output that the value was not found (22).

Often, find is used to find all values in some container. It 
works by searching through the container and examining 
every element one by one to see if a value is present.

// Program 23_8

// Find example

#include<iostream>

#include<vector>

#include<algorithm>

using namespace std;

int main() {

 vector<int> ages = { 23, 21, 18, 22, 21, 19, 20, 19, 27, 22 };

 vector<int>::iterator findval;

 int agetofind;

 cout << "I have a list of ages of participants." << endl;

 while (true) {

  cout << "What age do you want to find? ";

  cin >> agetofind;

  findval = find(ages.begin(), ages.end(), agetofind);

  if (findval != ages.end()) {

   cout << "Found : " << *findval << endl;

  }

  else {

   cout << agetofind << " not found" << endl;

  }

 }

}

http://www.thegreatcourses.com


g

h

270Lecture 23 | C++ Associative Containers and Algorithms

/* SORT */

The STL provides a sort function that will 
take a container like a vector or list and put 
it in sorted order. sort takes in a starting 
iterator and an ending iterator and then sorts 
everything in between.

Say you have a vector, v, with several elements 
in basically random order (9). For later 
comparison, you print out the elements of 
the original vector in order, showing that they 
were in fact in some unsorted order (g).

Then, you sort the vector by calling the sort 
algorithm, passing in v.begin and v.end as 
your starting and ending iterators (15).

After that, if you print out the elements of v, 
you see that they are indeed now in sorted 
order (h).

Sorting can be useful not only for ordering things in a neat way, but also as a way 
of making subsequent computations faster. If you'll be doing several searches for 
elements, then having the elements in a sorted order lets you use a binary search.

// Program 23_11

// Sorting example

#include<iostream>

#include<vector>

#include<algorithm>

using namespace std;

int main() {

 vector<int> v = { 4, 5, 9, 1, 15, 12, 3, 5, 7, 11, 14, 2, 9 };

 cout << "Before sorting: ";

 for (auto& iter : v) {

  cout << iter << " ";

 }

 cout << endl;

 sort(v.begin(), v.end());

 cout << "After sorting: ";

 for (auto& iter : v) {

  cout << iter << " ";

 }

 cout << endl;

}

http://www.thegreatcourses.com


271Lecture 23 | C++ Associative Containers and Algorithms

/* LOWER_BOUND */

STL also provides a binary search function 
called lower_bound, which repeatedly 
searches over some range by examining the 
middle and determining whether the thing 
being looked for is in the upper or lower half 
of the range.

For example, Program 23_12 works just like 
the code you used for find, but you have 
to first sort the vector (15). Then, you call 
lower_bound just like you called find (16).

If the search finds the element, then you 
get back an iterator pointing to the first 
occurrence. If it doesn't find the element, then 
it points to the next-largest element it finds. 
In this example, if you search for the value 25, 
it doesn't find that but instead returns that it 
found 27—the next-largest value in the list. 

For a large list—say one with a million elements—binary search with lower_bound 
will be much faster than an iterative search with find. So, the up-front cost of 
sorting the elements one time first can easily be outweighed by the time savings on 
the later searches.

Exercise 2

Click here to see the solution.

Suppose you want to read in a bunch of peoples' names and salaries and then print a list of the people from lowest to highest 
salary. To read in the information, imagine that you just prompt users to enter their name and salary on the console repeatedly. 
Because people won't have a negative salary, ask the user to indicate that he or she is done by entering a sentinel value, such as a 
negative value for the salary.

How might you write this code?

// Program 23_12
// Lower_bound example - using binary search 
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;

int main() {
 vector<int> ages = { 23, 21, 18, 22, 21, 19, 20, 19, 27, 22 };
 vector<int>::iterator findval;
 int agetofind;

 cout << "What age do you want to find? ";
 cin >> agetofind;
 sort(ages.begin(), ages.end());
 findval = lower_bound(ages.begin(), ages.end(), agetofind);
 if (findval != ages.end()) {
  cout << "Found : " << *findval << endl;
 }
 else {
  cout << agetofind << " not found" << endl;
 }
}

http://www.thegreatcourses.com


272Lecture 23 | C++ Associative Containers and Algorithms

READINGS
a Stroustrup, Programming Principles and Practice Using C++, 

chap. 20.

b Lippman, Lajoie, and Moo, C++ Primer, sections 3.4 and 9.1–9.3.

Exercise 2 Solution

Click here to go back to the exercise.

Here's one solution.

1 // Program 23_13
2 // Sorting Pairs
3 #include<iostream>
4 #include<vector>
5 #include<string>
6 #include<algorithm>
7 using namespace std;
8 
9 int main() {
10  vector<pair<double, string> > salaries;
11  cout << "Enter a person's name and salary, one name 

and then one salary per line." 
12   << endl;
13  cout << "Enter a negative salary to stop." << endl;
14  string personname;
15  double sal;
16  cin >> personname >> sal;
17  while (sal >= 0.0) {
18   salaries.push_back(make_pair(sal, personname));
19   cin >> personname >> sal;
20  }
21  sort(salaries.begin(), salaries.end());
22  for (auto& iter : salaries) {
23   cout << iter.first << " " << iter.second << endl;
24  }
25 }

Exercise 1 Solution

Click here to go back to the exercise.

Here's a solution.

1 // Program 23_7
2 // Map example - dictionary
3 #include<iostream>
4 #include<string>
5 #include<map>
6 using namespace std;
7 
8 int main() {
9  map<string, string> dictionary;
10  dictionary["rock"] = "An object that breaks scissors";
11  dictionary["paper"] = "An object that covers rocks";
12  dictionary["scissors"] = "An object that cuts paper";
13 
14  for (auto& iter : dictionary) {
15   cout << iter.first << ": " << iter.second << endl;
16  }
17 }

Notice that when you run this, all the dictionary elements 
are there, but they appear in a different order than the 
order they were assigned—specifically, they're iterated 
through in alphabetical order. This is because you've used 
a map. If you took this same exact code and replaced map 
with unordered_map, you'd still get the elements printed, 
but they could be in a random order.

http://www.thegreatcourses.com


273Lecture 23 | C++ Associative Containers and Algorithms

// QUIZ

1 Imagine that you have a map account that maps 

a name (represented as a string) to an account 

number (represented as an integer).

a How would you declare this map variable?

b Given a name stored in a string variable, s, 

how would you get the account number?

2 Write a program to read in first and last names 

and then output them in alphabetical order.

3 Match each STL container or algorithm to its purpose.

a find

b tuple

c map

d lower_bound

e priority_queue

f sort

g pair

1 given 2 iterators in a container, reorder the elements from smallest to 

largest in that range

2 search through a container from beginning to end, returning an iterator 

to the first occurrence found equal to the given value

3 search through a sorted container using a binary search, returning an 

iterator to the first element equal to or greater than the given value

4 associate one value (the key) to another (the value); also called a 

dictionary

5 group 2 elements together into a single container

6 group an arbitrary number of elements together into a single container

7 a container for elements that allows the largest one to be removed

Click here to see the answers.

http://www.thegreatcourses.com


274Lecture 23 | C++ Associative Containers and Algorithms

// QUIZ ANSWERS

1 a To declare a map, you need to first write 

#include<map>. The declaration needs to 

specify 2 types in the template: the type of 

the key (a string, in this case) and the type 

of the value (an integer, in this case). Then, 

the declaration would be:

map<string, int> account;

b To access an element of the map, use the 

[] operator, giving the key inside the []. 

That will return the appropriate value—in 

this case, the integer account.

account[s]

2 Here is one option:

1 #include<iostream>
2 #include<vector>
3 #include<algorithm>
4 using namespace std;
5 
6 int main() {
7  vector<pair<string, string> 

> names;
8  string firstname, lastname;
9  cout << "Enter names (first, 

then last), or enter \"done\" 
when finished." << endl;

10  cin >> firstname;
11  while(firstname != "done") {
12   cin >> lastname;
13   names.push_back(make_

pair(lastname,firstname));
14   cin >> firstname;
15  }
16  sort(names.begin(), 

names.end());
17  for (auto p : names) {
18   cout << p.second << " " 

<< p.first << endl;
19  }
20 }

Notice first that you have a container of pairs. 

Each name will be stored as a pair (last name 

and then first name). You will store these in a 

vector. The first loop just reads in first and last 

names, forms pairs of them, and adds them to 

the vector. Then, you use the sort algorithm 

to sort the vector. This will sort the pairs from 

smallest to largest; that is, it will sort the names 

from first alphabetically (by last name) to last 

alphabetically. If the last name (the first element 

of the pair) is the same, then it will compare first 

names (the second element of the pair). Finally, 

you use an iterator to go through the names and 

print them out in order.

3 a 2. The find algorithm uses a linear search 

over a (possibly unordered) container.

b 6. Tuples group arbitrary numbers of 

elements but can result in awkward code.

c 4. Maps are the way of letting you look up a 

value for a given key.

d 3. The lower_bound algorithm can only be 

used after the container is sorted.

e 7. Priority queues have elements pushed 

in any order, but the top element is the 

largest one.

f 1. Sorting is often used to make subsequent 

operations more efficient.

g 5. The pair groups 2 elements, which are 

accessed through the first and second 

members.

Click here to go back to the quiz.

http://www.thegreatcourses.com


275Lecture 24 | Artificial Intelligence Algorithm for a Game

24
IN THIS LECTURE:

AI Game Playing

Developing Algorithms

From Algorithms to Implementation

Improving Your Algorithms

Quiz

Quiz Answer

Artificial Intelligence 
Algorithm for a Game

A pinnacle achievement for any programmer is artificial intelligence (AI), 
which means making a computer act as though it's making intelligent 
choices and decisions. Game playing has long been a fundamental area 
of research in AI. The idea is that if you can get a computer to play a 
game well, where the domain and options are more clearly defined and 
limited, then you might have a sturdy basis for extending those ideas to a 
more general context.

// AI GAME PLAYING

You can develop a basic approach to AI game 
playing to get a computer to play a game of 
Connect 4 with you intelligently. To do this, 
you create new algorithms—that is, steps to 
solve a problem—to increase the artificial 
intelligence of your program.

Start by thinking about how you'd want a 
computer to make a choice for what a good 
move would be.

At any one point in time, the computer can 
look at the board and see that it has a few 
possible moves. Each of those moves will lead 

to a new board, and then it's the opponent's 
turn. A not-very-intelligent computer would do 
something like choose the first open column, 
or pick a column at random, or even just pick 
the single move that looked best without 
considering what the opponent might do.

But a slightly smarter computer would not 
only consider what move looked best for a 
solo player, but then what move the opponent 
could make after that. So, if the computer 
made possible move number 1, then the 
opponent would have some set of possible 
moves to make. If the computer assumes the 

opponent makes the best of those moves, 
then the computer can reasonably think: "If I 
make move number 1, then here is where I'll be 
at the next point I can make a move." Similarly, 
the computer could evaluate what the 
opponent's moves might be for every possible 
move along the way.

For Connect 4, there are 7 columns, so there 
are typically 7 moves possible at each turn. 
So, if a computer had to evaluate each move 
it could make and each move an opponent 
could make, that would be 7 times 7, or 49, 
different moves.

http://www.thegreatcourses.com


276Lecture 24 | Artificial Intelligence Algorithm for a Game

An even more intelligent computer would look 
more than just 2 moves ahead—it would look 
3 or 4 or more moves ahead! And the best 
game-playing AIs will do exactly that: They'll 
look several moves ahead. But notice how 
quickly the number of possibilities increases. In 
Connect 4, for every one further move ahead 
a computer looks, there are 7 times as many 
possibilities to consider! Looking 6 moves 
ahead would be 76, or more than 100,000, 
possibilities!

One of the advantages of C++ is that it tends 
to result in really efficient code, and the 
practical effect of this is that a C++ program 

might be able to look a little further ahead, in 
the same amount of time, compared with a 
program in some other language. And looking 
even one more level ahead can be all the 
difference in which AI is best.

You can take this basic idea of looking 
ahead and turn it into an algorithm for an AI 
playing a computer game. The algorithm will 
be a generic, abstract description of what 
to do, and it will be turned into a function, 
or other code, that is an actual, concrete 
implementation of the algorithm. So, you'll 
start by writing the algorithm in pseudocode 
and then turn it into actual C++ code.

// DEVELOPING ALGORITHMS

To develop the algorithm, you'll follow an 
approach that is similar to the top-down 
design approach, but you want to try to keep 
the problem as narrow as possible.

The purpose of the algorithm is to let a 
computer determine the best move it can 
make in a game. With that goal in mind, you 
start by considering what your input is: What 
is known at each point during the game? So, 
the input will be the current state of the game: 
the current gameboard and an indication of 
which player's turn it is.

Next, you consider the output you want from 
the algorithm. Clearly, you want to output 
a move, the best one the algorithm could 
determine.

Specifying the input and output clearly is 
an important part of algorithm design—just 
as important as the steps of the algorithm 
itself. Algorithms are often implemented as 
functions; the steps of the algorithm become 
the code in the function. You can approach 
this algorithm design in a similar way that you 
would approach top-down program design, 
looking at the overall challenge and breaking it 
into simpler parts.

If you're faced with making a choice, you have 
3 basic steps:

1 Make a list of possible valid moves. For 

Connect 4, each player has at most 7 moves—

any column that's not full.
2 Evaluate each of those moves to get some 

measure of how good or bad each one is.
3 Determine which of those moves is best and 

return the result.

The trickiest part will be the middle step of 
evaluating each move. That'll have 2 parts: first 
try a move (that is, update the gameboard to 

Notice that this outlined structure 
follows the definition of a tree—the 
same type used in top-down design. 
The root of the tree is the current 
gameboard, and each node's children 
are the possible moves. 

http://www.thegreatcourses.com


277Lecture 24 | Artificial Intelligence Algorithm for a Game

see what it would look like if that move was 
made), and then determine how good or bad 
of a state that move puts you in.

The idea here is that you want to think 
ahead as many moves as possible. You could 
generate all those possible moves at once, 
but that becomes really excessive in terms of 
memory you'd need. Instead, you'll treat the 
board as one of 2 cases: Either you don't want 
to look ahead any more moves and just want 
to see how good the current board position is, 
or you want to generate possible moves and 
choose what's best among them.

In the event that you're willing to look forward 
a little more, then you need to start this whole 
process again but from the opponent's point 
of view; that is, you want to go through this 
same algorithm but now starting from the 
opponent's moves.

This brings up the idea of recursion, which can 
be thought of as a function calling itself or an 
algorithm using itself to solve a problem. And 
that's what you're going to do here. You're 
going to determine the best move by making 
a move and then determining the best move.

Recursion needs to have a stopping point or it 
could go on forever, taking up too much time 
or computer memory. The ending condition 
you'll use here is to keep track of how many 
levels of recursion you've had; that is, you 

want to think about how many moves ahead 
you want the computer to consider. So, 
you're going to take a new input: the level of 
recursion you're at. Every time you make a 
recursive call—that is, every time you consider 
the best move—you'll do so for one more level 
of recursion than you were at previously. And 
if you reach your maximum, then you'll stop 
making recursive calls. Once you've reached 
the maximum level of recursion, you want to 
just evaluate a board to get a score.

When you are going to evaluate several 
different moves via recursion, it's not enough 
to just know which move is the next one to 
take—you also want to know how good or 
not that move is. So, you'll want to return not 
just the best move, but also the score for that 
move; in other words, your return information 
has increased. You use this score that you get 
from the recursive call to rank the moves and 
determine which one is best.

Evaluating a board to get a score—that is, 
to determine whether player 1 or player 2 is 
winning and by how much—can be a tricky 
problem that requires an algorithm of its own. 
What follows is a very simple algorithm, but it 
still turns out to perform OK!

In Connect 4, players take alternate turns, and 
no player develops an advantage in number of 
pieces.

Here's your board evaluation:

 » If the game is tied, then the value should be 0.

 » If player 1 seems to be winning, then you'll give 

a negative score—the more negative, the more 

that player 1 is winning.

 » If player 2 seems to be winning, you'll give a 

positive score: The larger the score is, the more 

player 2 has an advantage.

 » If one player or the other actually wins, 
you should have a really negative or really 

positive score.

The input to this algorithm is just the current 
board state. The output of the algorithm will 
be a score for that board state. If the board 
indicates that player 1 has won—that is, if 
player 1 gets 4 of his or her pieces in a row, 
called a connect 4—then you return a very 
small number, like −1000. If the board indicates 
that player 2 has won, then you return a very 
large number, like 1000. If you know that the 
game has ended in a tie, then you evaluate the 
board as a 0.

In your winner-or-loser evaluation function, if 
you don't have a winning board, then you'll 
just give a random value to the board. Let's 
say that's between a range of −5 to 5. This is 
basically just saying "make a random move." 
Notice that this is still an algorithm, but the 
only information it's using from the board 
is whether or not the game is over. But it's 
actually enough for your program to work.

http://www.thegreatcourses.com


278Lecture 24 | Artificial Intelligence Algorithm for a Game

// FROM ALGORITHMS TO IMPLEMENTATION

To go from algorithms to implementation, you 
begin by modifying the Connect 4 classes that 
were developed in lecture 21. A few changes 
were made to simplify things: There's only one 
game—Connect 4—and there's no inheritance 
or virtual functions in this version.

There are 3 main classes:

 » game, which has member functions to start a 

game, take a turn, and declare a winner.

 » connect4_board, which stores a Connect 4 

board, including any pieces already in place. This 

class can check for a winner, print the board to 

the screen, check whether columns are filled, 
and update itself.

 » connect4_move, which is a basic class that 

holds a move: the column to place a piece in 

and which player is placing that piece. It has 

some basic accessor functions to set and read 

moves or to ask a player to enter a move.

And 2 small changes were made to make this 
program an AI program:

 » You no longer ask which game to play, and 

instead, when starting the game, you ask whether 

the computer should be player 1 or player 2, 
keeping this information as a private variable.

 » Then, when taking a turn, if it's the player's turn, 
you get the move from the player, as usual. But 

if it's the computer's turn, then you will call the 

get_best_move function, which will return a pair: 
the score for the best move and which column 

the best move is in. So, you just take the second 

element of the pair and make the move there.

So, there are 2 algorithms that need to be 
implemented: a board evaluation algorithm 
and get_best_move. These are the core parts 
of the AI algorithm in the code. Because the 
board evaluation algorithm will want to make 
use of board information, it makes sense for 
it to be a member function of the connect4_
board class. Meanwhile, get_best_move 
doesn't need any information about the board—
that's what the board evaluation function 
does—so it should be a standalone function.

Here's one way to implement a get_board_
score function. First, notice that your routine 
has access to the board state because it's a 
member function of the connect4_board 
class. Thus, it doesn't have to bring in the 
board as a parameter; it already has access 
to it. It will return an integer, the score for the 
board. You already had a routine, check_
winner, that would indicate whether the game 
was won by player 1 or player 2, or was a tie, 
or was none of those. So, you first call that 
function to see if the board had a winner.

If the game was won by player 1 or player 2 or 
was a tie, then you return either -1000, 1000, 
or 0, respectively.

If the game is not over, then you return a 
random value between −5 and 5, as the 
algorithm described. To do this, you can 
generate a random number from 0 to 10 and 
subtract 5.

The random value you assign just means that 
boards where no one has won are evaluated 
randomly. But the fact that the algorithm does 
identify winning and losing positions means 
that it still provides value to the look-ahead 
process of finding the best move.

In other words, even though you have a 
board evaluation function that only evaluates 
whether someone has won or not, it will still 
be enough to give you a decent AI. And it 
gives you something to improve later!

Remember that to generate a number 
from 0 to 10, you use the rand function 
to generate a random integer and take 
it modulo 11. 

 // Returns negative value for player 1 advantage, 
positive for player 2 advantage
 int get_board_score() {
  int winner = check_winner();
  if (winner == 1) return -1000;
  if (winner == 2) return 1000;
  if (winner == 3) return 0;
  // No one has won yet, so see who is "closer"
  return rand()%11 - 5;
 }

The full program is available for download 
at www.TheGreatCourses.com/CPlusPlus.

http://www.thegreatcourses.com


279Lecture 24 | Artificial Intelligence Algorithm for a Game

Next, you need to implement the get_best_move function, using the 
algorithm described previously.

The snippet at right shows one way to implement it. Notice that it 
takes in all the algorithm input as parameters: the person whose turn 
it is, the current board state, and the current depth of recursion. 

Instead of the recursion levels increasing, you'll instead be counting 
them down. So, the initial call would set some level of recursion 
that's wanted—5 or 6 is reasonable—and then each time a new move 
is generated, you decrease that number by 1 until you're at level 0.

Your function follows the same form you outlined in the algorithm 
pseudocode. You first make a list of all moves. To do this, you create 
a vector of pairs: Each pair will have a score for the move and then 
which column it is in. Initially, you just go through all 7 columns 
on the board and check if each is full. If it's not full, then you add 
that column as a potential move, though you don't have a score 
evaluation for that move yet.

The next section of code evaluates the moves. You go through the 
list of moves you just identified. Notice that you're using an iterator 
to go through the list; the value m will take on each of the moves. 
You can see it's a reference because of the &, and because it's a 
reference, it's referring to the actual move.

For that move, you create a board, starting with the old one, which 
was the parameter b, and then take a turn using that particular 
column.

Then, for each move, you have one of 2 cases:

 » If you've hit the limits of your recursion—that is, if the depth parameter 

is now 0 or if you've reached a winning condition for one player or the 

other—then you just set the board score.

 » If you need to continue evaluating moves, you can make a recursive call. 
To do this, you call the same function you're in: get_best_move. The 

player number needs to switch. Notice that the next player to move is 

just 3 minus the current player_to_move, so if the current player is 1, the 

next player is 2, and vice versa. So, you just pass in 3-player_to_move to 

get the next player number.
  

You also pass in the new board that you generated after making this 

move that you're wanting to evaluate. Finally, you pass in a recursion 

depth level, 1 less than whatever came in. Notice that what is returned is 

a pair that includes the best score you could get from that next possible 

move, so you associate that returned score with the current move. You 

don't care about the other part of the recursion—the actual move that 

would yield that score. The only time that matters is at the very end, 
when you get your final move out.

pair<int, int> get_best_move(int player_to_move, connect4_board b, int 
depthtogo) {
 int i;
 // Make list of moves
 vector<pair<int, int> > possible_moves;
 for (i = 0; i < 7; i++) {
  if (!b.isfullcol(i)) {
   // This is a possible move
   possible_moves.push_back(make_pair(0, i));
  }
 }
 // Evaluate each move
 for (auto& m : possible_moves) {
  connect4_board newboard = b;
  connect4_move nextmove;
  pair<int, int> mv;
  nextmove.set_move(player_to_move, m.second);
  newboard.take_turn(nextmove);
  if ((depthtogo == 0) || (newboard.check_winner())) {
   // Don't look ahead any more - just see how good this board is by itself
   m.first = newboard.get_board_score();
  }
  else {
   // Look ahead another level
   mv = get_best_move(3-player_to_move, newboard, depthtogo - 1);
   m.first = mv.first;
  }
 }

http://www.thegreatcourses.com


280Lecture 24 | Artificial Intelligence Algorithm for a Game

The final part of your algorithm is to find 
the best move and return. To find the best 
move, you'll use the sort algorithm from the 
STL to sort all of your moves from smallest 
to largest. Because a move is a pair, the first 
part of which is the score, that means the STL 
algorithm will sort all possible moves from the 
lowest score to the highest.

Remember that for player 1, a low board 
score means that he or she is winning. So, if 
the current player is player 1, then the player 
would like to choose the move that gives the 
lowest score. Thus, after sorting, you just 

return the first element of the vector. On the 
other hand, if it's player 2's turn, then you 
want the largest score, so you return the last 
element of the vector.

If you run this, you'll find that the AI is 
surprisingly competent. You'll almost certainly 
still be able to beat it, but it'll make sure to try 
to block you from getting a Connect 4, and 
it'll grab an opportunity to get one itself if the 
chance is available. And it looks ahead several 
moves, so if it sees a combination of moves 
that could help it win, or prevent you from 
winning, it'll make those moves.

// IMPROVING YOUR ALGORITHMS

 // Select best move
 sort(possible_moves.begin(), possible_moves.end());
 if (player_to_move == 1) {
  // Player 1's move, so want smallest value
  return possible_moves[0];
 }
 else {
  // Player 2's move, so largest score is best
  return possible_moves[possible_moves.size() - 1];
 }
}

int check_vertical_advantage() {
 /* Check the board to see if either player has 2 
or 3 of 4 needed */
 int i, j, k;
 int advantage = 0;
 for (i = 0; i < columns; i++) {
  // Can loop over all but last 3 rows, comparing 
4 at a time
  for (j = 0; j < rows - 3; j++) {
   int count1 = 0;
   int count2 = 0;
   for (k = 0; k < 4; k++) {
    if (board[i][j + k] == 1) {
     count1++;
    }
    else if (board[i][j + k] == 2) {
     count2++;
    }
   }
   if ((count1 == 3) && (count2 == 0)) {
    advantage -= 100;
   }
   else if ((count1 == 0) && (count2 == 3)) {
    advantage += 100;
   }
   else if ((count1 == 2) && (count2 == 0)) {
    advantage -= 10;
   }
   else if ((count1 == 0) && (count2 == 2)) {
    advantage += 10;
   }
  }
 }
 return advantage;
}

You could try to improve on these algorithms. 
The board evaluation function is key to how 
well the AI performs, so that's an obvious 
candidate for improvement, because all you've 
done so far is identify whether there's a winner 
and otherwise make a random move.

One option for improvement would be to look 
for all cases in the program where one player 
or the other is getting close to a connect 4.

For example, you might look at all lines of 
4 in the board in every direction—vertical, 
horizontal, and diagonal—similar to the 
routines to check for winners, but check 
whether one player has 3 of the 4 pieces 
needed for that option and the fourth space 

needed is still open. That means that the 
player has a chance to get a connect 4 if he 
or she can get that one space. So, give the 
player 100 points. In other words, if it's player 
1 who has 3 of 4, then subtract 100 points 
from the board score, and if it's player 2, then 
add 100 points to the board score.

And you could do the same thing with even 
fewer pieces, looking for places where a 
player has 2 spaces needed and the other 2 
are empty. In this case, they're a little farther 
away, so maybe just add or subtract 10 
points.

Adding this gives you an AI that's now 
awfully hard to beat! 

http://www.thegreatcourses.com


281Lecture 24 | Artificial Intelligence Algorithm for a Game

READINGS
a Stroustrup, Programming Principles and 

Practice Using C++, chap. 20.

b Lippman, Lajoie, and Moo, C++ Primer, 
sections 3.4 and 9.1–9.3.

WHAT'S NEXT?

There are several directions you could go to take your programming skills to the 
next level.

 » You could learn more about algorithms and data structures in general.

 » You could explore a particular application area, including learning one of the many 
libraries that give you tools to approach applications.

 » You could use your foundation of C++ to learn almost any other language you might 
want, such as C#, Java, or JavaScript.

// QUIZ

1 Lecture 21 presented a program that would 

allow the game Reversi (Othello) to be played. 

Now imagine that you wanted to build an AI for 

Othello, similar to the one you built for Connect 

4. The process of looking ahead by several 

moves would be no different for the Reversi 

game. However, you would need a different 

board evaluation function as well as different 

functions to list the available moves. 

For the board evaluation function for a 

Reversi game:

a What would be a straightforward board 

evaluation for Reversi? Remember, you want 

a computation that would give a low score if 

player 1 is winning and a high score if player 

2 is winning.

b Write the board evaluation function that 

you would use. The name should be 

get_board_score, and it would return 

an integer. It should be a member of the 

reversi_board class:

 class reversi_board {
  private:
  vector<vector<int> > board;
   // Other code including board 
evaluation function here
 };

Recall that the board is 8 by 8 in size and 

that the elements are 0 if there is no piece 

on the square or 1 or 2 if player 1 or 2 has 

his or her piece on the square.

Note: As an exercise, you might want to try on 

your own to adapt the AI for playing Connect 4 

to instead play Reversi. You will need to update 

the earlier Reversi game functions similar to the 

way the Connect 4 functions were updated and 

introduce new routines for finding all valid moves 

and the board evaluation.

Click here to see the answer.

http://www.thegreatcourses.com


282Lecture 24 | Artificial Intelligence Algorithm for a Game

// QUIZ ANSWER

1 a For a board evaluation function, an easy method is to just take the 

number of player 2's pieces and subtract the number of player 1's 

pieces. When player 2 is doing better (has more pieces), the score will 

be higher, and when player 2 is doing worse (has fewer pieces), the 

score will be lower. 

Note that there are other ways you could improve board evaluation 

if you know game strategy well. For example, corners are generally 

more valuable than other squares, because they cannot be flipped. 

And edge squares, especially those 2 away from a corner, are usually 

slightly more valuable to hold than other squares.

b Here is one possible implementation. Note that this would be a public 

member of the reversi_board class. So, it will have access to the 

board member variable.

int get_board_score() {
 int i, j;
 int totalscore = 0;
 for(i=0;i<8;i++) {
  for(j=0;j<8;j++) {
   if (board[i][j] == 1) {
    totalscore -= 1;
   } else if (board[i][j] == 2) {
    totalscore += 1;
   }
  }
 }
 return totalscore;
}

The function just loops over all the squares of the board and keeps 

track of a counter that is decreased for each occurrence of player 1's 

piece and increased for each occurrence of player 2's piece.

Click here to go back to the quiz.

http://www.thegreatcourses.com


283Glossary

Glossary
abstract class

A class that contains a pure virtual function. It defines a general 
category of classes from which other classes can be derived. 
Instances of an abstract class cannot be created. (L20)

accessor function
Provides an approved channel to read information from 
a class. Allows other functions to access private member 
variables. Also provides a useful place to set a breakpoint when 
debugging. (L16)

algorithm
A precise set of rules and steps to follow to accomplish some 
task. Often described by pseudocode, which is then converted 
into actual code. (L22, L23, L24)

append
To add on to the end of an existing item. Appending is 
commonly used when writing to files, to add additional data to 
the end of the file, or to add one string to the end of another. 
(L9, L10)

arguments
Values given in a function call; each argument parallels a 
parameter inside the function itself, and the parameter takes on 
the value of the argument within the function. (L12)

array
A contiguous block of memory containing several variables of 
the same type. The array is allocated at once, and individual 
variables (elements) are accessed by an index. (L7) The more 
modern and C++ approach is to use a vector.

array out-of-bounds error
A bug arising from attempting to access an element of an array 
that is outside the block of memory allocated. This happens 
when the array index is negative or larger than the maximum 
size of the array. (L7) This can be a major security flaw.

artificial intelligence
Programming a computer to act as though it is making 
intelligent choices and decisions. (L24)

associative container
A container that associates 2 or more data types together. 
Examples include pairs, tuples, and maps. (L23)

attribute
See member variable.

binary search
A process for searching through a sorted list of values by 
examining the halfway point and then searching through one of 
the 2 remaining halves. (L23) Contrast with iterative search.

http://www.thegreatcourses.com


284Glossary

binary tree
A data tree where every node has at most 2 children. (L18)

Boolean
A true or false value used in conditions and logical expressions. 
A Boolean can be a specific true or false value; a Boolean 
variable can take on a true or false value; a Boolean expression 
can evaluate to true or false using logical operators. (L3)

Boolean operator
See logical operator.

bottom-up design
Creating larger, more complex programs by combining simpler 
pieces. Often, new functions are created by combining calls to 
existing functions. (L15)

breakpoint
When debugging, a point at which execution of the program 
stops. (L11)

bug
A mistake in a program that causes it to fail to compile, crash 
when running, or produce incorrect output. Debugging a 
program is a common part of programming. (L4, L14)

C++ Standard Library
A standard set of around 50 library files included with every C++ 
installation. Libraries used in this course include, among others, 
iostream, cmath, cstdlib, ctime, vector, string, fstream, 
stringstream, and algorithm. (L6)

call (aka function call)
A command that causes a function to be executed using any 
arguments specified. Functions are called by writing their name 
followed by parentheses that contain any arguments to give to 
the function. (L6)

casting a value
See type casting.

class
A programming structure that combines data 
(member variables) with operations (member functions). 
Each class is like a new type of variable defined by the 
programmer. (L16)

comparison operator
An operator for comparing 2 different values, the result of which 
is a Boolean. Common comparisons are greater than (>), greater 
than or equal to (>=), less than (<), less than or equal to (<=), 
equal to (==), and not equal to (!=). (L3)

compile
The process of turning code into machine instructions. Code is 
compiled either into debug mode or release mode. (L4) See also 
preprocessor commands and separate compilation.

concatenation
Combining 2 strings one after the other; the result of addition of 
strings. (L9)

http://www.thegreatcourses.com


285Glossary

concrete class
A class that provides implementation details for all defined 
functions; you can create objects from concrete classes. (L20)

console
The default source for input and output of a program, reached 
with the command cout. (L1)

constant reference
See passing by reference.

constructor
A function, defined within a class, called to initialize a variable 
(object) when it is first declared. (L8, L10, L17)

container
A templated class that can be used to store and manipulate data 
of various types. Examples include vectors, lists, queues, and 
priority queues. The STL defines several containers. (L22)

debug
To remove bugs from a program. This can be done 
systematically by identifying a repeatable error, narrowing in on 
the location of the bug, isolating the reason for the failure, fixing 
the bug, retesting the fixed code, and examining any similar 
parts of code. (L4, L11, L14)

debug mode
A compiler setting that adds in extra machine instructions that 
enable a debugger to be run on the code. (L11) Contrast with 
release mode.

debugger
A tool that helps analyze a program, allowing a programmer to 
step through a program line by line and examine the memory 
while the program is running. (L1, L11)

declaration of a variable
Statement declaring a variable type, followed by a variable 
name. This allocates memory for the variable and associates the 
variable name with that part of memory. (L2)

default constructor
A constructor that does not take parameters. The default 
constructor is used when an object is declared with no 
parameters. If a class does not define a default constructor, one 
will be automatically created for it. (L17)

default parameter
When a function's parameter is given a value to take in case the 
function is called without a corresponding argument for that 
parameter. Only the rightmost parameter(s) in the list can be 
default. (L13)

dereferencing a pointer
Accessing the thing stored at the memory address kept in 
a pointer. Syntax is *y or y[0] (for an object) or y-> (for an 
object's member variable or function). (L18)

destructor
A special function that is called when it is time for a function or 
class to be removed from memory. (L18).

http://www.thegreatcourses.com


286Glossary

dynamic memory allocation
Allocating new memory while the program is running in a 
location known as the heap or the free store (L18). Dynamic 
memory allocation is useful when the memory needed might not 
be known in advance. Contrast with static memory allocation.

element
One particular variable within an array or vector of variables. An 
array or vector will usually consist of many elements, which can 
be accessed by an index into the array. (L7)

encapsulation
An object-oriented programming approach for wrapping 
all related data and functions together in one package. 
A class is a way of encapsulating member functions and 
member variables. (L16)

error
Any problem encountered when writing or executing a program. 
This can include bugs like syntax errors and logic errors as well 
as runtime errors (such as array out-of-bounds errors) that can 
be caught with exceptions. (L14)

exception
Causes a function to exit when an exceptional case, typically 
a runtime error, is encountered. Referred to as "throwing an 
exception" or "raising an exception." (L14; L19)

executable file
A file of machine instructions created by a linker that has all the 
needed information from program files and from library files and 
thus can be run on its own. (L6)

execute
To cause a computer to perform some set of machine 
instructions; can refer to a program, a function, or any part of 
code. (L1)

expression
A combination of literals, variables, and function calls combined 
with operators that evaluates to some value. (L2)

friend function/operator
Workaround to give a function or operator defined outside a 
class access to the member variables defined inside that class. 
Works by placing a signature for the function inside the class 
definition. (L17)

function
A group of operations and commands that can be executed 
as a group; a way of conceptually separating one set of 
functionality from everything outside. Functions can be 
called within other parts of a program. Defining a function 
requires a function header and a function body. (L6, L12) 
See also member function (including accessor function and 
mutator function) and stub function.

function body
The set of commands that is executed when a function is called. 
The body is defined within curly braces following the function 
header. (L12)

function call
See call.

http://www.thegreatcourses.com


287Glossary

function header
Contains all of the information needed for the black box of the 
function to interact with the larger program: the return type, 
the name of the function, and the parameter list (contained in 
parentheses). (L12)

function overloading
Using the same function name but taking different parameters 
to get different behavior. (L13) Compare with operator 
overloading. An alternative to function overloading is using 
default parameters.

generic programming
See template.

global variable
A variable whose scope is the whole program. Global variables 
are generally discouraged, because understanding their value 
requires understanding the entire program, rather than just part 
of it. (L12) Contrast with local variable.

header file
A file, usually with a .h extension, that describes the interface 
for a library. Header files are included (via #include) in order to 
gain access to the functions, classes, and variables provided by a 
library. (L6, L15)

heap
Memory that holds data not known ahead of time but assigned 
by dynamic memory allocation during execution (L18). Contrast 
with stack.

identifier
See variable name.

index
An integer that identifies a particular element of an array or a 
vector. The first element has index 0, the second element has 
index 1, and so on. (L7)

indexing into an array/vector
Accessing elements of the array/vector using a variable that 
contains the index of an element. This is done by specifying the 
array/vector name, followed by square brackets containing the 
index of the desired element. (L7, L8)

information hiding
A programming technique for managing complexity of code in 
which details of how a function (or class) works is hidden from 
the portion of code using that function (or class). The code 
calling a function is unaware of how the function itself works, 
and a function is unaware of how it is being used by the code 
calling it. (L16, L19)

inheritance
A hierarchical approach in object-oriented programming to 
allow new offspring classes (aka child classes, derived classes, 
or subclasses) to make use of (aka inherit) member variables 
or functions already defined in an existing ancestor class (aka 
parent class, base class, or superclass). (L19)

initialize
Specifying a value for a variable or object when it is first 
declared. Objects can be initialized using a constructor. (L2)

http://www.thegreatcourses.com


288Glossary

integrated development environment (IDE)
A computer program that makes developing code easier. 
This typically includes a text editor to write code, a graphical 
interface to allow code to be compiled and executed easily, a 
debugger, and other tools. Free IDEs for C++ include Microsoft's 
Visual Studio Community and Apple's Xcode. (L1, L11)

iterative search
A process for searching through a list of values by examining 
each element one by one. The list is generally not in sorted 
order. (L23)

iterator
A more general form of an index. Iterators are a general way of 
accessing elements in general containers, which might not have 
an integer index. (L22)

library
A set of classes, functions, and variables written externally to a 
program. A library can be accessed by including its header file in 
a program. (L6) See also C++ Standard Library.

linker
A program run automatically after the compiler that combines 
the machine instructions from a compiled program with machine 
instructions from libraries. (L6)

list
A data structure in which items are kept in order one after the 
other. Items can be inserted or removed in the middle of a list 
efficiently but cannot be accessed by an index. (L22)

literal
A specific value written in code. Literals can be assigned to 
variables or can be used in an expression. (L9) Contrast with 
variable.

local variable
A variable whose scope is the current function. It can be 
accessed within that function but not outside it. (L12) Contrast 
with global variable.

logical operator (aka Boolean operator)
An operator used to perform logical operations on Booleans, 
such as and (&&), or (||), and not (!). (L3)

loop
A programming construct for repeating a set of commands. A 
while loop repeats as long as a condition is true. A for loop 
makes it easier to understand how the loop works by putting 
initialization, condition, and update all in one place. (L5)

map (aka dictionary)
An associative container that pairs a key, or entry, with a 
definition, or other value. (L23)

member function (aka method or operation)
A function defined as part of a class. Can be public, private, or 
protected. (L8; L16)

member variable (aka attribute)
A variable defined as part of a class. Can be public, private, or 
protected. (L16; L19)

http://www.thegreatcourses.com


289Glossary

memory leak
An error in programs caused by dynamically allocating memory 
in a way that reassigns a pointer but leaves the memory 
allocated with no remaining way to access or free it. (L18)

modulus operation
Gives the remainder after division. Expressed using the % 
operator. (L2, L6)

multidimensional array
An array of arrays. (L7)

mutator function
A member function of a class that can be used to modify a 
member variable. Mutator functions can provide good places to 
set breakpoints during debugging. (L16)

namespace
A way of helping you distinguish one library's functions 
from another's, even if both libraries use the same function 
names. (L15)

object
A particular instance of a class. An object is effectively a variable 
whose type is the class. An object contains variables and 
functions that belong to it. (L10, L16)

object-oriented programming (OOP)
A method of software development that is centered on creating 
classes and objects. Principles of encapsulation, inheritance, and 
polymorphism are commonly used. (L1, L16, L17, L20)

operator
A symbol used to perform an operation on one or 2 literals or 
variables. A unary operator (such as -, ++, or !) will operate on 
just one element. A binary operator (such as +, -, *, or /) will 
have 2 elements, or operands: one just before the operator and 
one immediately afterward. (L2, L17)

operator overloading
Method for defining different behavior of operators depending 
on the types of the operands. For example, + can mean addition 
for numbers or concatenation for strings. Operators can be 
overloaded to define behavior for new classes. (L9, L17). 
Compare with function overloading.

output
The result of a program, generally as indicated by what is 
printed in the console. (L1)

overloading
Providing different implementations of a function or operator 
depending on the type(s) it is working with. (L9, L13, L17) See 
also function overloading and operator overloading.

pair
An associative container that allows 2 different data types to be 
easily combined into a single structure. (L23)

parallel arrays
A method of keeping track of multiple values for the same entity 
by using multiple arrays or vectors. The index indicates which 
element is referred to, and the values for that entity can be 
determined by indexing into each of the arrays using the same 
index. (L7) An alternative to using a class.

http://www.thegreatcourses.com


290Glossary

parameter
Values passed into a function when called. Parameters are 
specified in the function header and behave like variables within 
the function. Each parameter corresponds to one argument, 
and the corresponding argument provides the initial value of the 
parameter. (L12)

passing by reference
When a function is called, the parameter becomes a reference 
to the actual argument; no copying of values is performed. 
Changing the parameter value thus changes the value in the 
argument itself (L13). You have to give a variable argument, not 
a specific value—unless passing by constant reference, which 
can be a reference to a literal or a variable but does not allow 
any modification.

passing by value
When a function is called, making a copy of the argument and 
setting the parameter to that value. (L13)

pointer
A variable type that is not actually storing a value but, rather, the 
memory location at which some value is stored. The pointer thus 
points to an actual object. The type of variable or object being 
pointed to must be stated when the pointer is declared. Pointers 
must be dereferenced to access the values (or functions) in 
the actual variable or object. (L18) A pointer is similar to 
a reference, but pointers can change values (point to new 
memory locations) and must be dereferenced. A pointer can let 
you treat anything in an inheritance hierarchy as an example of 
the base type.

polymorphism
Object-oriented programming technique for creating member 
functions that can operate differently for each subclass yet 
all be called in the same way. In this way, a superclass can 
take on many different shapes, depending on which subclass 
implementation is used. (L20) See also inheritance.

preprocessor commands
Commands to be performed before code is actually compiled. 
Includes importing header files or defining values. (L4)

print
To send output to the console or any other output device. (L1)

priority queue
A data structure used to order items based on some priority. 
Items are pushed into the queue, and the highest-priority item 
can be popped from the front of the queue. (L23)

private member variable/function
A function or variable defined within a class or struct that is 
accessible only in that class and not in any subclasses or outside 
the class. This is the default for members of a class. (L16)

procedural programming
A form of programming in which computation is divided into 
a number of functions (also called procedures), each of which 
is like a small program of its own, performing a particular task. 
(L1) Contrast with object-oriented programming.

http://www.thegreatcourses.com


291Glossary

protected member variable/function
A function or variable defined within a class or struct that is 
accessible in that class or any subclasses but not outside the 
class hierarchy. (L19)

pseudocode
A summary of the general steps that should be taken 
in a program or algorithm. Pseudocode is not code in a 
programming language, but a programmer can easily convert it 
to actual code. (L4)

pseudorandom
Generating values that seem random, though are actually being 
generated through some nonrandom process. Often a (perhaps 
unknowable) seed value is used to begin the pseudorandom 
generation process. (L6) Available via the <cstdlib> library in 
the C++ Standard Library.

public member variable/function
A function or variable defined within a class or struct that is 
accessible anywhere, including to commands outside the class. 
This is the default for members of a struct. (L16)

pure virtual function
A virtual function that is not defined in the base class. A class 
containing a pure virtual function is an abstract class and 
cannot be instantiated. Pure virtual functions must have an 
implementation defined in a subclass. (L20)

queue
A data structure supporting first-in-first-out behavior. Items 
are pushed on the back of the queue and popped off the 
front. (L22)

recursion
When a function calls itself. (L18, L24)

reference
A variable name that is used to refer to some other variable. 
A reference is a pointer that does not have to be explicitly 
dereferenced. References are most commonly seen when 
passing parameter values by reference, where a function's 
parameter names are used to refer to the actual variable 
specified in the argument. (L13)

release mode
A compiler setting that produces more-efficient code; 
debuggers cannot be used on code compiled in release mode. 
(L11) Contrast with debug mode. 

return
A value that a function computes and is returned to the place 
where the function was called, replacing the function call in 
the calling location. Each function has a return type, specifying 
the type of the value that is returned. A function that simply 
performs actions without producing a value that needs to 
replace the function call does not need to return anything, 
and the return type void is used. Referred to as "returning a 
value." (L12).

scaffold
A portion of code used to set up testing of a function. The 
scaffold does not need to be a complete program but just needs 
to set up variables and data so that a function can be called. 
(L15) Compare with stub function.

http://www.thegreatcourses.com


292Glossary

scope
The range of a program in which a variable is defined. Variables 
are said to be either "in scope" or "out of scope." (L5, L12)

sentinel value
An unusual value so far outside the range of expected values 
that its appearance can signal the program that it is time for a 
loop or other process to end. Sentinel values are used when a 
number of iterations is not known or there is not another way to 
predict or otherwise test when input or data should end. (L5)

separate compilation
Breaking a program into different parts (e.g., a header file and a 
source file), each of which is compiled on its own. The complete 
program requires linking the separately compiled parts together. 
This is used to simplify individual files or to enable reuse of code, 
as in a library. (L15)

signature
The information needed for a function to be called. This includes 
not only the function name but also the number and types of 
parameters. Function signatures must be unique and are how 
the compiler determines which function should be executed by a 
function call. (L13)

stack
1 Memory that holds all of the variables you declare and all 

those you pass as parameters. (L18) Contrast with heap. 

2 A data structure that supports last-in-first-out behavior. 
Items are pushed on top of the stack and popped off the 
top. (L22)

Standard Template Library (STL)
A library provided by default with C++ that contains several 
commonly used templated data structures and algorithms. 
(L22, L23)

static memory allocation
Memory that is known will be needed in a function or program 
at the time the program is written and is set aside in a part 
of memory known as the stack. The memory is automatically 
allocated when a program is run or a function is called. (L18) 
Contrast with dynamic memory allocation.

static variable
A variable declared in a way that it persists (within a loop or 
function) beyond when it would otherwise fall out of scope. (L5)

stream
A source of input or a destination for output. Streams can 
include the console, files, or strings. (L1, L10)

stream operator
An operator that is used to direct input from a stream (>>) or 
output to a stream (<<) (L1, L2, L10)

string
An ordered grouping or collection of characters—letters, 
numbers, punctuation, spaces, etc. Strings can be either specific 
values, known as string literals and specified within quotation 
marks, or variables of the string type, accessed in C++ via 
#include <string>. (L9)

http://www.thegreatcourses.com


293Glossary

struct
A container, equivalent to a class, for packaging data together. 
Developed in C, structs had only public member variables. In 
C++, structs are identical to classes, except that the default is 
that all members are public. Short for structure. (L16)

stub function
A short implementation of a function that does not work 
correctly but can be used for testing a larger program before 
the function has been fully implemented. Stub functions can 
be called and should return some valid result so that code 
containing a function call can be tested and debugged. (L15) 
Compare with scaffold.

template
A C++ technique for implementing generic programming. 
Templates allow a general class, data structure, or function to 
be defined, where the specific type of an element of the data 
structure or a parameter of the function is determined when 
the variable is declared or the function is called. For example, 
a vector is a templated data structure, and the specific type 
of a vector is determined when the vector is declared (e.g., 
vector<int> for a vector of integers). (L8, L22, L23)

test case
A specific set of input and expected output for a function, 
program, or portion of code. Test cases are used to determine 
if code is working as expected and are an important part of 
debugging. (L4) See also unit test.

try-catch blocks
A set of programming commands used to handle exceptions. 
Code that should be run but that may have exceptions is 
contained in a try block, and then one or more catch blocks 
are used to determine what happens for various types of 
exceptions. (L14)

tuple
An associative data structure that allows multiple values 
of various types to be easily combined into a single 
structure. (L23)

type
The way that information in memory should be interpreted. 
Each variable or value in a program has a particular type. In C++, 
types for variables must be specified when they are declared 
and cannot change. Common types are int (integer), float 
(floating-point number), bool (Boolean), and string, but a type 
can be any class. (L2)

type casting (aka casting a value)
Converting one variable type into another. This can be done by 
specifying the new type in parentheses in front of the variable 
or value or by stating the new type and the value or variable to 
convert in parentheses. (L5)

Unified Modeling Language (UML)
Developed in the 1990s and standardized in 2005 to aid the 
design of object-oriented software. UML uses a standardized set 
of notation and graphical indicators to describe class structures, 
their relationships, and a wide variety of other program 
behavior. (L21)

http://www.thegreatcourses.com


294Glossary

unit test
A set of test cases for a particular function used to determine 
if it is implemented correctly. Consists of input parameters and 
expected return values. (L14)

value
A specific number or state. Can be expressed as a literal or 
can be the result of an expression or the current memory in a 
variable. Contrast with variable. See also passing by value.

variable
A box of memory defined by a type (such as int) and a 
name (aka an identifier). Variables can take on different values 
throughout a program. (L2) See also declaration of a variable, 
global variable, and local variable.

variable name (aka identifier)
The term used while programming to refer to a box of memory 
that is a variable. Good names help programmers identify the 
purpose of a variable. (L2) Compare with signature.

vector
A templated data structure that is commonly used to store 
numerous values of the same type. Elements of a vector can be 
accessed using an index. Vectors are similar to arrays but can 
grow in size. (L8) Compare with array.

virtual function
Object-oriented programming technique for defining functions in 
a base class that can be defined differently in each derived class. 
(L20) See also pure virtual function.

http://www.thegreatcourses.com


295C++ Syntax

C++ Syntax

// SYMBOLS

Symbols in C++ often have more than one predefined meaning (see table below), 
including some meanings not listed here. In addition, many symbols can be given 
additional meanings by users (see overloading in the Glossary).

This short intro to C++ syntax is only a starting point for identifying the meaning for various symbols, keywords, and common commands. 

Comments and Preprocessor Commands

// comment
Remaining line; all characters are ignored until a new line is encountered in the code.

/* begin comment
All characters are ignored until an end comment (*/) is encountered.

*/ end comment
Used to end a comment that was begun with /*.

# pound
Indicates that the line is an instruction to the preprocessor to do something before 
compiling, rather than a line of C++ code to be compiled. Common uses are 
#include and #define.

http://www.thegreatcourses.com


296C++ Syntax

Grouping Symbols

; semicolon
Designates the end of a statement of code; similar to a period 
in ordinary English.

( ) parentheses
1 Used to contain lists of arguments in function calls. Must 

always appear after the function name when calling a 
function, even if there are no arguments (e.g., f()); 

2 Surround the list of parameters in a function header (e.g., 
int f(int x, int y)); 

3 Surround the Boolean used in conditionals and the loop 
conditions in loops (e.g., if (x>2)); 

4 Used to show precedence of operations in an expression 
(as in mathematics) (e.g., 3*(4+5)); 

5 Contains a type when typecasting a variable (e.g., to 
convert an integer variable x to a floating-point variable, 
you can write (float) x).

{ } curly braces
1 Encloses a block of code, grouping the commands inside of 

it. This is used to denote the extents of a function body, a 
loop body, the results from a conditional, a class definition, 
try-catch blocks, etc. 

2 Specifies a set of indexed values for initializing a vector or 
array (e.g., int x[4] = {10, 20, 30, 40}).

< > angle brackets
1 With the #include preprocessor command, encloses the 

names of libraries to use from the C++ Standard Library 
(e.g., #include<iostream>); 

2 When defining templates, used to specify the types that 
the template will take on (e.g., vector<int> v).

" " quotes
1 Used to enclose a string literal, including when it specifies 

information such as a file name (e.g., "This is a string." ). 

2 With the #include preprocessor command, encloses 
the name of a library or user-created file to bring in (e.g., 
#include "myclass.h").

' ' single quotes
Used to enclose a single character (e.g., 'a' or '\n').

http://www.thegreatcourses.com


297C++ Syntax

Moving Data and Pointing to Data

>> 1 Stream operator used to direct data from an input stream; 

2 Right-shift operator for numerical data that shifts bits to the right.

<< 1 Stream operator used to direct data to an output stream; 

2 Left-shift operator for numerical data that shifts bits to the left.

= equal sign
The assignment operator. Assigns the value on the right side to the variable on the left. Note that this does not compare values for equality.

[ ] square brackets
1 Used when declaring an array to designate the size of an array (e.g., int x[100]) or in an array parameter to show that the parameter will be 

an array (e.g., int f(int[] a, int n)); 

2 Used to provide an index to an element of an array, vector, or similar container (e.g., a[3]).

& ampersand
1 Designates a variable or parameter as a reference. Used when passing by reference, (e.g. void f(int &x) indicates parameter x is passed 

by reference). 

2 Generates a pointer to a particular value or variable (e.g., &x is a pointer to the variable x, and if x is an integer, it can be assigned to a 
pointer variable whose type is a pointer to an integer (i.e., int*)). 

3 A bitwise and operation. This operates on a bit-by-bit basis and is not the same as the logical and operation that is typically used in 
conditionals.

http://www.thegreatcourses.com


298C++ Syntax

Arithmetic and Assignment

+ plus
1 Addition operator for numerical data; 

2 Concatenation operator for strings.

- minus
Subtraction or negation operator for numerical data.

* asterisk
1 Multiplication operator for numerical data; 

2 When declaring a pointer, it is placed after the type of the 
thing being pointed to (e.g., int* x declares the variable x 
to be a pointer to an integer; 

3 For pointers, it dereferences the pointer to obtain the value 
at the memory location stored in the pointer (e.g., *x is the 
object/variable/value at the memory location indicated by 
the pointer x).

/ (forward) slash
Division operator for numerical data. For integer data types, 
this gives the quotient of the result without the remainder.

% percent sign
Modulus operator. For integer data, this gives the remainder 
from division.

++ increment operator
Causes an integer value to increase by 1.

-- decrement operator
Causes an integer value to decrease by 1.

+= increase operation
Causes the variable on the left to have the + operation applied 
to itself with the value on the right (e.g., x += 3 increases the 
value of x by 3).

-=, *=, /=, %=, etc.
Variations of the += operator but applying other operations.

http://www.thegreatcourses.com


299C++ Syntax

Comparison Operators

> greater-than comparison operator

< less-than comparison operator

>=  greater-than-or-equal-to comparison operator
(Note that => is not valid.)

<=  less-than-or-equal-to comparison operator 
(Note that =< is not valid.)

== equality operator
An operator that compares 2 values for equality. The operator 
is true if the 2 values are the same.

!= inequality operator
An operator that compares 2 values for inequality. The 
operator is true if the 2 values are different.

Logic Operators

! exclamation point
A logical not operation. Converts a Boolean value to the 
opposite value.

&& logical and operator
True if both operands are true; false otherwise.

| vertical bar
A bitwise or operation. This operates on a bit-by-bit basis and 
is not the same as the logical or operation that is typically 
used in conditionals.

|| logical or operator
True if either (or both) operands are true; false otherwise.

http://www.thegreatcourses.com


300C++ Syntax

Operators for Classes and Objects

. period
Access a member variable or function (e.g., x.y will be the member variable y in object x, and x.y() will be the member function y in object x).

-> dereference and access member variable or function
For a pointer, the object at the location has its member function called (e.g., x->y() will call the member function y() for the object at location 
x, and x->y will refer to the member variable y from the object at memory location x).

~ tilde
Used to designate the destructor when defining a class.

Special Characters

\ backslash
An escape character that is used to specify special characters. The character following the backslash indicates what the character should be 
(e.g., \n indicates a new-line character, and \t indicates a tab character; \\ indicates a single backslash character, \" indicates a quotation mark, 
and \' indicates a single quote).

http://www.thegreatcourses.com


301C++ Syntax

// PREDEFINED KEYWORDS 

break
When encountered inside of a loop, immediately stops the 
execution of the loop and jumps to the first statement following 
the loop.

catch
Designates the commands to be executed in response to an 
exception generated in a preceding try block.

class
Used to define a class. The general format is class class_name 
{/* class description */};.

const
Indicates that a variable will not change values; particularly 
useful for passing by const reference.

continue
When encountered inside of a loop, immediately stops the 
execution of that iteration of the loop and begins the next 
iteration (if any).

delete
Frees up dynamically allocated memory that was previously 
allocated with new.

else
Designates the commands to follow if an if condition evaluates 
to false.

extern
Indicates that the definition for a function or class will be 
provided outside of the current file.

for
Loop designator that provides a compact way of specifying 
all loop control in one place. The keyword is followed by 
parentheses containing 3 clauses separated by semicolons: 
an initialization clause executed before the first iteration, a 
conditional to check at the beginning of each possible iteration, 
and an update clause to indicate what should change with each 
iteration. Alternatively, the parentheses can contain variable and 
container to iterate over, separated by a colon; the variable will 
take on each value from the container. 

friend
Designates that a function defined outside a class should have 
access to a class's members as though it were part of the class.

A keyword is a word defined in the C++ language itself. 
These are often automatically recognized by your 
IDE and presented to you in a color distinct from the 
surrounding code. The list here includes C++ keywords 
that are commonly used but is not complete (see the 
Predefined Variable Types list below, for example). For a 
more complete list, consult an online reference such as 
cppreference.com.

http://www.thegreatcourses.com
http://cppreference.com


302C++ Syntax

if
Identifies the start of a condition. The keyword is followed by 
parentheses containing a Boolean (the condition), and following 
that are any commands to execute if the condition is true and, 
optionally, an else clause.

namespace
Designates a namespace to be used when creating classes or 
functions or, when coupled with using, when referring to a class 
or function.

new
Allocates new memory dynamically (on the heap).

operator
Used to designate an operator that will be overloaded.

private
Indicates that subsequent class member variables and functions 
should be private (accessible within that class only).

protected
Indicates that subsequent class member variables and functions 
should be protected (accessible to a class and its derived 
classes only).

public
Indicates that subsequent class member variables and functions 
should be public (accessible to anything).

return
Specifies the value to return from a function.

static
Indicates a variable that should persist across multiple calls 
to a function. Static variables will maintain their value from 
the previous call to a function on subsequent calls rather than 
allocating a new local variable with each function call.

struct
An alternative to a class. Traditionally used only for grouping 
member variables, it now provides the same functionality as 
a class.

try
Designates a section of code that should be executed but that 
might generate exceptions. Exceptions are handled by code in a 
subsequent catch block.

typedef
Defines a new name to be used for a type; allows a user to use 
more compact and meaningful type names.

using
Indicates a namespace to be used by default so that 
namespaces do not need to be specified explicitly for every 
command.

virtual
Indicates that a function in a class can be defined more 
specifically in derived (children) classes.

http://www.thegreatcourses.com


303C++ Syntax

void
A type indicating no information; commonly used to specify the 
return type for functions that do not need to return a value.

while
Loop designator. The keyword is followed by a conditional in 
parentheses and then by commands to be executed repeatedly, 
as long as the conditional evaluates to true at the beginning of 
the loop.

// PREDEFINED COMMANDS 

begin
A member function of a container returning an iterator pointing 
to the first element in a container. Calling .begin() on the 
container will return the iterator. 

cin
A source (obtained by using #include<iostream>) for 
streaming console input (input typed in by the user). 

cout
A destination (obtained by using #include<iostream>) for 
streaming console output (output to be printed in the console 
window). 

end
A member function of a container returning an iterator pointing 
to the position just after the last element of a container. 
Calling .end() will return the iterator. Typically, you use this by 
incrementing the iterator until it equals .end(), indicating that 
you have reached the end of the container. 

eof
Member function for finding whether you have encountered the 
end of a file. Only when you have tried to read something past 
the end of the file will .eof() return true.

failbit
A particular exception that is thrown when a file is opened 
incorrectly.

find
An algorithm (obtained by using #include<algorithm>) for 
performing a linear search through a container (such as an 
array or a vector). It takes in a beginning and ending iterator 
and an element value to look for. It returns an iterator to the 
first position where a matching element is found or the ending 
iterator if nothing is found. Likewise, there is a .find() member 
function of the string class for finding a substring within a string 
(the substring is the only parameter, returning string::npos if 
nothing is found).

Predefined commands are commonly used commands 
(e.g., as part of the C++ Standard Library) that are not 
actually part of the C++ language itself.

http://www.thegreatcourses.com


304C++ Syntax

getline
A function that takes 2 parameters: an input stream and a string 
variable. A line (until an end-of-line character, such as new line: 
\n) is read in from the input stream and stored in the string 
variable.

lower_bound
An algorithm (obtained by using #include<algorithm>) for 
performing a binary search on a sorted array or vector. It takes 
in a beginning and ending iterator and an element value to look 
for. It returns an iterator to the first item that is greater than or 
equal to the item being searched for.

sort
An algorithm (obtained by using #include<algorithm>) 
for sorting vectors, arrays, or other containers. It takes in a 
beginning and ending iterator and sorts the elements from the 
beginning one to just before the ending one.

string::npos
A value used to compare to in order to find the end of a string. 
When searching in a string, if an item being searched for is not 
found, the location will be reported as string::npos, indicating 
that it was not within the string.

// PREDEFINED VARIABLE TYPES 

auto
Automatically determines the data type for the variable based 
on how the variable is first assigned a value. This is useful for 
avoiding long type descriptions when the type of the variable 
will be obvious, but in most cases, it is better to explicitly declare 
individual types. C++ keyword.

bool
Boolean. The value 0 is false; any other number is interpreted as 
true. C++ keyword.

char
A single character. Can also be interpreted as a very small 
integer. Pronounced "char" or "care." C++ keyword.

double
Floating-point decimal number that has double the precision of 
the float. C++ keyword.

float
Floating-point decimal number (standard length). C++ keyword.

fstream
A file stream, used for reading from or writing to files. Must 
#include<fstream>.

These are some of the most commonly used data types. 
Some are built-in C++ keywords, and others are part of 
the C++ Standard Library and must be included to be 
used. You can also define your own types using classes.

http://www.thegreatcourses.com


305C++ Syntax

int
Integer. Any non-decimal number over the range … −2, −1, 0, 
1, 2 … . C++ keyword.

long or long long
Integer using more precision and thus capable of representing 
larger numbers than standard int. C++ keyword.

string
A sequence of characters strung together. Must 
#include<string>.

stringstream
A string stream, used for reading from a string or writing to a 
string, similar to how you read and write to the console or to 
files. Must #include<sstream>.

void
A null data type, usually used to indicate that a function has 
no return value or as a way of describing a generic pointer, 
where the type of the data stored in memory is not known. C++ 
keyword.

// CONTAINER TYPES 

deque<type>
Doubly ended queue. Can easily add to or remove from 
beginning or end. Must #include<deque>.

forward_list<type>
Stores data in a (singly linked) list. Compared to a list, it is 
somewhat more efficient for most operations, but it is highly 
inefficient to access the end of the list or to go backward 
through the list. Must #include<forward_list>.

list<type>
Stores data in a (doubly linked) list. Easy to add or delete 
at any point in the list, but no indexing is supported. Must 
#include<list>.

Containers are data structures that hold several variables 
of the same type. Each container supports certain types 
of operations on its elements. They are included in the 
C++ Standard Template Library (STL). Each of these is 
a templated class and is declared by specifying one or 
more variable types that it will contain. These are some of 
the most commonly used containers, but the STL contains 
several more. Each of these containers is accessed using 
some #include command for the preprocessor.

http://www.thegreatcourses.com


306C++ Syntax

map<type1, type2>
Stores key-value data pairs. The first type is the key and is used 
as a unique index for storing data; the second type is the value 
that is associated with each particular key. Must #include<map>.

pair<type1, type2>
Stores pairs of 2 data elements. Provides a simple way of 
grouping 2 data values of different types without creating a new 
class. Can #include<utility>, but this is automatically included 
in most other STL libraries, too.

priority_queue<type>
Allows data to be inserted and the largest element to be pulled 
out. The type is often a pair or other user-defined class. Must 
#include<queue>.

queue<type>
Supports adding elements and pulling out elements in the order 
they were added. Must #include<queue>.

stack<type>
Supports adding elements and pulling out the most recently 
added element. Must #include<stack>.

tuple<type1, type2, ..., typeN>
Stores data in a tuple, allowing a simple structure for combining 
an arbitrary number of data elements of possibly different 
types in a single structure without creating a new class. Must 
#include<tuple>.

unordered_map<type1, type2>
A version of the map that does not keep the elements in any 
particular order. More efficient than the map for operations 
but cannot give an ordered list of all elements. Must 
#include<unordered_map>.

vector<type>
Stores data in a sequence that can be directly indexed and can 
be added on to at the end. Must #include<vector>.

http://www.thegreatcourses.com


307Bibliography

Bibliography
A variety of C++ books are available, but many of them assume that the 
reader is already familiar with some other programming language, and 
few are truly aimed at novice programmers. C++ books tend to fall into 2 
categories. Some will basically present C programming and then present the 
additional features that C++ provides as an add-on. A few books will present 
a C++-centric view of programming and develop all of the material but skip 
some of the more C-like features that C++ still provides. The references 
recommended here fall into the second category, while this course as a whole 
aims to fall in between these 2 ends of the spectrum.

In addition to books that tend to describe how to use C++, there are also 
language references, which can be considered as being closer to a dictionary 
or encyclopedia and are useful to look up details of language syntax and 
behavior, standard library features, etc. Although there are printed language 
references, for general purposes, the online sources work just as well and just 
as easily and tend to stay very current.

The first 2 references in the following list are both recommended, and while 
both may move somewhat quickly for novice programmers, they are both 
designed to be useful for those first learning to program. The third book is 
a recommendation for those who already know programming and just want 
an idea of the particular way C++ is used. Next are 2 online references, which 
are mainly recommended for language reference. Finally, a book on general 
software design is recommended, though it will be most useful to those 
already familiar with programming.

 
 
Stroustrup, Bjarne. Programming Principles and Practice Using C++. 2nd ed. 
Addison-Wesley Professional, 2014. 

This is a book written to be a college textbook by the creator of C++. It gives a 
thorough coverage of the language and includes information about software 
development, not just the language itself. It is best used if you are willing to 
read through entire chapters in a linear order, rather than jumping to a particular 
topic, because some of the topics build on earlier discussions and sometimes 
earlier code is intentionally presented with errors or inadvisable approaches that 
are fixed later.

Lippman, Stanley B., Josée Lajoie, and Barbara Moo. C++ Primer. 5th ed.  
Addison-Wesley Professional, 2012. 

This book provides an extensive coverage of C++, including many smaller details 
of the language. It provides suggested exercises in most sections to help you 
practice the topics covered. Compared to the previous book, it tends to have 
greater focus on the details of how C++ works and less emphasis on general 
programming methodology. Note that this edition does not cover C++ features 
beyond C++11, but most programmers will not need the features of the newer 
releases of C++.

Stroustrup, Bjarne. A Tour of C++. 2nd ed. Addison-Wesley Professional, 2018. 

This is a very short book that gives a brief overview of the features and syntax 
of C++. It will be valuable to those who are already familiar with another 
programming language and are interested in learning about some of the 
highlights and key ideas in C++. It is not a complete reference, nor is it a good 
book for someone learning to program, but will be helpful to experienced 
programmers.

www.cplusplus.com. 

This website includes a good language reference; a reference for all the 
standard C++ libraries, including the STL; and some more basic tutorials and 
articles. There is also an online discussion forum.

en.cppreference.com. 

This website is just a language and standard library reference, but it is very 
extensive and complete. It includes features from the most recent editions of 
C++ as well as planned future releases of C++ (clearly labeled).

Ousterhout, John. A Philosophy of Software Design. Yaknyam Press, 2018. 

This book describes the process of software design without regard to one 
specific language and mostly without reference to any particular paradigm. It is 
filled with extremely useful advice and is highly recommended for those who are 
experienced programmers. Novice programmers or those with little experience 
may not find the suggestions contained in it as meaningful but can still get wise 
advice about design from the book.

http://www.thegreatcourses.com
http://www.cplusplus.com
http://en.cppreference.com

	Professor Biography
	Table of Contents
	Course Scope
	01—Compiling Your First C++ Program 
	Introduction to Computer Programming
	What Happens When You Program
	Your First Program
	Program 1_1
	Program 1_9
	Exercise
	Program 1_10

	Readings 
	Exercise Solution
	Quiz
	Quiz Solutions

	01b—C++ QUICK START: With Browser or Download 
	Introduction
	Basic Hello, World! Program

	Quick Start with a Browser
	Interactive Hello, World! Program
	Hello, World! Program with Error

	Quick Start with an IDE
	Windows PC with Visual Studio Community versus Mac with Xcode


	02—Variables, Computations, and Input in C++  
	Variables and Computations
	Program 2_1

	Variable Declarations
	Exercise 1
	Program 2_3

	Variable Assignments
	Computing Calories
	Exercise 2
	Exercise 3

	Incrementing Variables
	Program 2_10
	Program 2_14

	How C++ Supports Mathematical Functions
	Program 2_17
	Program 2_18

	Input
	Program 2_19
	Program 2_21

	Readings 
	Exercise Solutions
	Quiz
	Quiz Solutions

	03—Booleans and Conditionals in C++
	Boolean Variables
	Program 3_1
	Program 3_2
	Program 3_3
	Program 3_6
	Exercise 1

	Comparison Operators
	Program 3_7
	Program 3_9

	Conditional Statements
	Program 3_10
	Program 3_11
	Program 3_12
	Exercise 2
	Program 3_14
	Program 3_15

	Readings 
	Exercise Solutions
	Quiz
	Quiz Solutions

	04—Program Design and Writing Test Cases in C++ 
	The Structure of a C++ Program
	Program 4_1
	Program 4_2

	Designing and Testing Your Program
	Exercise
	Program 4_6_1
	Program 4_6_9

	Readings 
	Exercise Solution
	Quiz
	Quiz Answers

	05—C++ Loops and Iteration
	While Loops
	Program 5_1
	Exercise
	Program 5_5
	Program 5_9

	 For Loops
	Program 5_12
	Program 5_13
	Program 5_16
	Program 5_17

	Scope of Variables
	Program 5_18
	Program 5_19
	Program 5_21

	Readings 
	Exercise Solution
	Quiz
	Quiz Answers

	06—Importing C++ Functions and Libraries
	Code Libraries
	How Code and Libraries Are Compiled in C++
	Program 6_3

	The C++ Standard Library
	Program 6_4

	Random Numbers
	Program 6_7
	Program 6_8
	Program 6_9
	Program 6_10
	Program 6_11
	Program 6_13
	Program 6_14_a
	Program 6_14

	Readings 
	Quiz
	Quiz Answers

	07—Arrays for Quick and Easy Data Storage
	Storing Variables in Memory
	Program 7_1

	Indexing into an Array
	Program 7_3
	Program 7_4

	Initializing an Array
	Program 7_5
	Program 7_8
	Program 7_9
	Program 7_10

	Array Bounds
	Program 7_11

	Readings 
	Quiz
	Quiz Answers

	08—Vectors for Safe and Flexible Data Storage
	Using Vectors
	Program 8_2
	Exercise 1
	Program 8_6
	Exercise 2
	Program 8_7

	Vector Size Initialization
	Program 8_8
	Program 8_9

	Vector Resizing
	Program 8_11
	Program 8_12

	Performing Out-of-Bounds Checks
	Program 8_13
	Program 8_15

	Assigning Vectors
	Program 8_16_a
	Program 8_16

	Readings 
	Exercise Solutions
	Quiz
	Quiz Answers

	09—C++ Strings for Manipulating Text
	String Variables and Literals
	Program 9_1
	Program 9_2
	Program 9_3
	Exercise 1
	Program 9_5
	Exercise 2

	String Operations
	Program 9_6
	Program 9_8
	Program 9_8_a

	Char-Type Variables
	Program 9_9
	ASCII Table

	Readings 
	Exercise Solutions
	Quiz
	Quiz Answers

	10—Files and Stream Operators in C++
	File Streaming
	Exercise 1
	Program 10_4
	Program 10_5
	Exercise 2
	Exercise 3

	String Streaming
	Program 10_8
	Exercise 4

	Readings 
	Exercise Solutions
	Quiz
	Quiz Answers

	11—Top-Down Design and Using a C++ Debugger
	Top-Down Design
	Program Fragment 11_1_c

	Incremental Development
	Program Fragment 11_1_d
	Program Fragment 11_1_e

	Debugger Tool
	Readings 
	Quiz
	Quiz Answers

	12—Creating Your Own Functions in C++
	Functions as Black Boxes
	Creating Your Own Functions
	Exercise 1
	Exercise 2

	The Function Body
	Program 12_1

	Conceptual Separation
	Program 12_6
	Program 12_7
	Program 12_8
	Exercise 3

	Scope
	Program 12_ERROR_1
	Program 12_ERROR_2
	Program 12_10
	Program 12_11
	Program 12_12

	Readings 
	Exercise Solutions
	Quiz
	Quiz Answers

	13—Expanding What Your Functions Can Do in C++
	Overloading Functions
	Program 13_1
	Program 13_2
	Program 13_3
	Program 13_3_ERROR

	Setting Default Parameters
	Program 13_5

	Using References
	Program 13_7
	Program 13_8
	Exercise

	Readings
	Exercise Solution
	Quiz
	Quiz Answers

	14—Systematic Debugging, Writing Exceptions
	A Systematic Approach to Debugging
	Program 14_1
	Program 14_2

	Types and Sources of Errors
	Program 14_4
	Program 14_5

	Using Exceptions
	Program 14_6
	Program 14_7

	Readings 
	Quiz
	Quiz Answers

	15—Functions in Top-Down and Bottom-Up Design
	Top-Down Design
	Program 15_1_1
	Program 15_1_2
	Program 15_1_3

	Bottom-Up Design
	Program 15_2_1
	Program 15_2_3

	Building a Library
	Program 15_3

	How to Create Separate Source and Header Files in Your IDE 
	Readings 
	Quiz
	Quiz Answers

	16—Objects and Classes: Encapsulation in C++
	Object-Oriented Programming
	Program 16_1

	Creating Classes
	Sorting Data in Classes
	Program 16_3_a
	Program 16_3_b
	Program 16_4
	Program 16_5
	Program 16_6

	Public versus Private
	Program 16_9_ERROR
	Exercise

	Readings 
	Exercise Solution
	Quiz
	Quiz Answers

	17—Object-Oriented Constructors and Operators
	Constructors
	Program 17_1
	Program 17_3
	Exercise

	Operator Overloading
	Program 17_6

	Overloading Binary Operators
	Program 17_8
	Program 17_10

	Overloading Unary Operators
	Program 17_11
	Program 17_11_a

	Friend Functions
	Program 17_12

	Overloading Stream Operators
	Program 17_13

	Readings 
	Exercise Solution
	Quiz
	Quiz Answers

	18—Dynamic Memory Allocation and Pointers
	Dereferencing Pointers
	Program 18_1
	Program 18_2

	Dynamic Memory Allocation
	A Game of 20 Questions
	Program 18_5

	Destructor Functions
	Vectors: An Alternative to Dynamic Memory Allocation
	Readings 
	Quiz
	Quiz Answers

	19—Object-Oriented Programming with Inheritance
	Inheritance
	Program 19_1
	Program 19_2_a
	Program 19_3
	Exercise 1

	The Protected Category
	Program 19_4

	Constructors with Inheritance
	Program 19_5
	Exercise 2

	Readings 
	Exercise Solutions
	Quiz
	Quiz Answers

	20—Object-Oriented Programming with Polymorphism
	A Class Hierarchy
	Program 20_1
	Program 20_2
	Program 20_4

	Virtual Functions
	Program 20_5

	Pure Virtual Functions
	Program 20_8
	Exercise

	Readings 
	Exercise Solution
	Quiz
	Quiz Answers

	21—Using Classes to Build a Game Engine in C++
	Designing Classes
	Coding Your Design
	Readings 
	Quiz
	Quiz Answer

	22—C++ Templates, Containers, and the STL
	Templates and Containers
	Stacks
	Program 22_1

	Queues
	Program 22_2

	Lists and Iterators
	Program 22_4
	Program 22_7
	Program 22_8
	Program 22_9
	Program 22_10
	Exercise

	Readings 
	Exercise Solution
	Quiz
	Quiz Answers

	23—C++ Associative Containers and Algorithms
	Exercise Solutions
	Containers
	Program 23_1
	Program 23_2
	Program 23_3
	Program 23_4
	Program 23_5
	Program 23_6
	Exercise 1

	Templated Functions
	Program 23_8
	Program 23_11
	Program 23_12
	Exercise 2

	Exercise Solutions
	Readings 
	Quiz
	Quiz Answers

	24—Artificial Intelligence Algorithm for a Game
	AI Game Playing
	Developing Algorithms
	From Algorithms to Implementation
	Improving Your Algorithms
	Readings 
	What's Next? 
	Quiz
	Quiz Answer

	Glossary
	C++ Syntax 
	Bibliography 

